update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- chn_senti_corp
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: kt_punc
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: chn_senti_corp
|
19 |
+
type: chn_senti_corp
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.7078651685393258
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.7313662547821116
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.7194238380517767
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.957316742326961
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# kt_punc
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.1703
|
44 |
+
- Precision: 0.7079
|
45 |
+
- Recall: 0.7314
|
46 |
+
- F1: 0.7194
|
47 |
+
- Accuracy: 0.9573
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 2e-05
|
67 |
+
- train_batch_size: 16
|
68 |
+
- eval_batch_size: 16
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- num_epochs: 10
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 |
|
79 |
+
| 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 |
|
80 |
+
| 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 |
|
81 |
+
| 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 |
|
82 |
+
| 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 |
|
83 |
+
| 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 |
|
84 |
+
| 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 |
|
85 |
+
| 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 |
|
86 |
+
| 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 |
|
87 |
+
| 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.19.1
|
93 |
+
- Pytorch 1.11.0+cu113
|
94 |
+
- Datasets 2.2.1
|
95 |
+
- Tokenizers 0.12.1
|