kktoto commited on
Commit
a15b835
·
1 Parent(s): cbbb2a2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - chn_senti_corp
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: kt_punc
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: chn_senti_corp
19
+ type: chn_senti_corp
20
+ args: default
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.7078651685393258
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.7313662547821116
28
+ - name: F1
29
+ type: f1
30
+ value: 0.7194238380517767
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.957316742326961
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # kt_punc
40
+
41
+ This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.1703
44
+ - Precision: 0.7079
45
+ - Recall: 0.7314
46
+ - F1: 0.7194
47
+ - Accuracy: 0.9573
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 2e-05
67
+ - train_batch_size: 16
68
+ - eval_batch_size: 16
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 10
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 |
79
+ | 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 |
80
+ | 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 |
81
+ | 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 |
82
+ | 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 |
83
+ | 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 |
84
+ | 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 |
85
+ | 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 |
86
+ | 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 |
87
+ | 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.19.1
93
+ - Pytorch 1.11.0+cu113
94
+ - Datasets 2.2.1
95
+ - Tokenizers 0.12.1