---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:23290
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: "Intervention \nSession \ntime \n(mins)\nMaterial resources \n\
Occupations \n(rehabilitation specialists)\nAssistive products \nEquipment \n\
Consumables \nActivities of daily living Target: Activities of daily living (ADL)\n\
Assessment of ADL\n30\n–\n•\tUtensils for activities of daily \nliving\n–\n•\t\
Occupational therapist \n•\tPhysiotherapist ADL training\n30\n–\n•\tUtensils for\
\ activities of daily \nliving\n•\tAssistive products for toileting \n•\tAssistive\
\ products for dressing\n–\n•\tOccupational therapist •\tPhysiotherapist\nProvision\
\ and training \nin the use of assistive \nproducts for self-care\n30\n•\tAssistive\
\ products for toileting \n•\tAssistive products for dressing\n– –\n•\tOccupational\
\ therapist \n•\tPhysiotherapist\nModification of the home \nenvironment\n60\n\
•\tHandrail/grab bar\n•\tRamps\n•\tMeasuring tape \n– •\tOccupational therapist\
\ \n•\tPhysiotherapist\nEducation and vocation\nTarget: Work and employment\n\
Vocational assessment\n90\n–\n•\tWork-related tools and \nequipment\n– •\tOccupational\
\ therapist\n•\tSocial work and counselling \nprofessional\nVocational counselling,\
\ \ntraining and support\n60\n–\n•\tWork-related tools and \nequipment •\tInformation\
\ materials (e.g. \nflyers, brochures)\n•\tOccupational therapist\n•\tSocial work\
\ and counselling \nprofessional\nSelf-management\nTarget: Self-management\nEducation,\
\ advice and"
sentences:
- self-management education in rehabilitation
- rehabilitation interventions for dementia due to Alzheimer's disease
- comparison of treadmill and swimming exercise for DCM
- source_sentence: "correlations. However, no association was found between kidney\
\ \nstones and homeostatic dysregulation (p overall >0.05).\n3.4 Association between\
\ healthy dietary \nscores and aging indicators We conducted an analysis to examine\
\ the association between \nhealthy dietary scores and aging indicators listed\
\ in \nSupplementary Table S2. After adjusting for all covariates, \nwe observed\
\ significant negative associations between healthy dietary scores (the AHEI,\
\ DASHI, HEI-2020, and MEDI) and \naging indicators (KDMAge, PhenoAge, homeostatic\
\ dysregulation, KDMAge accelerated aging, and PhenoAge accelerated aging). \n\
Additionally, the results of the multiple logistic regression analysis \nindicated\
\ that higher healthy dietary scores were associated with a decreased risk of\
\ accelerated aging, as shown by KDMAge and \nPhenoAge. Restricted cubic splines\
\ in Figure 3 visualize both linear \nand non-linear relationships between healthy\
\ dietary scores and aging indicators. KDMAge, PhenoAge, KDMAge accelerated \n\
aging, and PhenoAge accelerated aging all exhibited linear \nassociations with\
\ the four dietary scores.\n3.5 Aging indicators partially mediated the association\
\ between a healthy diet and \nkidney stones\nWe assessed the mediating effect\
\ in the association between \nkidney stones and a healthy diet using mediation\
\ analysis, with aging indicators as mediators (Supplementary Table S3). Our results\
\ suggest \nthat the aging indicators KDMAge, PhenoAge, KDMAge accelerated \n\
aging, and PhenoAge accelerated aging significantly mediated the"
sentences:
- Mental health assessment for Parkinson disease by psychologists
- linear relationships between dietary scores and KDMAge PhenoAge
- wrist joint fractures immobilization
- source_sentence: "•\tMoisturizing product\n•\tMouthpieces\n•\tNeedles and syringes\
\ \n•\tNose clips\n•\tNutritional diary\n•\tOral anesthetic spray\n•\tOral swabs\
\ •\tReplaceable sticky electrode pads \n•\tSpeaking valve and tracheostomy \n\
cap\n•\tSpecimen cup\n•\tStraws \n•\tSyringes\n•\tTissues •\tTongue depressor\n\
•\tTopical antiseptics\n•\tTubing\n•\tWound dressings\n101\nAssistive products\
\ (for prescription)\nEquipment (for service facilities) Consumables (for service\
\ facilities)\n•\tStanding frames, adjustable\n•\tWalking frames/walkers\n•\t\
Wheelchair (manual or electrical)\n•\tCasting kit\n•\tOrthoses kit •\tSplinting\
\ kit (static/dynamic)\n•\tAssistant support belt\n•\tTransfer boards/slide sheet\n\
•\tFoam rollers/wedges\n•\tPillows\n•\tTreatment table •\tStools/small benches\
\ of varying \nheight\n•\t(Functional) electrical stimulation kit\n•\tTENS Supply\
\ kit\n•\tResistance bands \n•\tResistive exercise putty \n•\tWeights •\tExercise\
\ mat\n•\tExercise ball \n•\tBalance board/cushion\n•\tTraining stairs\n•\tSteps\
\ (stackable)\n•\tRamps (temporary/mobile)\n•\tMobile mirror\n•\tParallel bar\
\ •\tTimer\n•\tCycle ergometer (arm or leg)\n•\tUpper limb workstation\n•\tEquipment\
\ for sport and recreational \nand leisure activities\n•\tAssistive products for\
\ recreational \nand leisure activities"
sentences:
- assistive products for work and employment workstation adaptation
- Wound dressings and topical antiseptics for injury care
- Short-chain carbohydrates in grains and cereals
- source_sentence: "made little to no difference at other \ntime-points;\n\t›\n\t\
improved health-related quality of life \nin the immediate term (small effect)\
\ \nand made little to no difference at other \ntime-points; ›\n\treduced catastrophic\
\ thinking in the \nimmediate term (moderate effect); or\n\t›\n\tmade little to\
\ no difference to pain or \nsocial participation at any time-point. In a single\
\ trial among older people, no \nbenefits for pain or function were observed \n\
(very low certainty evidence).\nFive trials reported on adverse events. A \nfew\
\ serious adverse events were reported, although none was related to the SMT \n\
intervention. Three trials which examined \nadverse effects reported that they\
\ were \ncommonly transient, ranged from mild \nto moderate severity and were\
\ related to musculoskeletal soreness and tiredness. \nNo data on harms among\
\ older people were \nreported. \n•\t In the comparison of SMT with no \nintervention\
\ (four trials), benefits were observed for pain, function, health-related \n\
quality of life and psychological outcomes. \nHowever, since the certainty of\
\ the evidence \nwas very low, it was uncertain whether SMT:\n\t› reduced pain\
\ and improved back-\nspecific function in the immediate term \n(moderate effects)\
\ and made little to no \ndifference at other time-points;\n\t›\n\timproved general\
\ function in the immediate and short term (small to \nmoderate effects) and made\
\ little to no \ndifference at other time-points;\n\t›\n\timproved health-related\
\ quality in the \nimmediate term (small effect);"
sentences:
- impact of low FODMAP diet on bloating and pain in IBS patients
- swallowing therapy tools and products
- Adverse events of SMT in dietary science
- source_sentence: "CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist,\
\ USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and\
\ language therapist, United Kingdom); Darcy \nFEHLINGS (Developmental pediatrician/Clinician\
\ scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza\
\ Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad\
\ Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA);\
\ Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational\
\ therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South\
\ Africa); Abena TANNOR (PRM physician/\nFamily medicine, Ghana).\nMembers of\
\ the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman\
\ Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician,\
\ Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER"
sentences:
- Developmental pediatrician research and studies
- materials needed for plaster of Paris casts
- impact of client medications on exercise responses
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base fitness health Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5370942812982998
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5374806800618238
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5374806800618238
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5664605873261206
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5370942812982998
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5372230808861412
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5372488408037095
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.48898763523956723
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.032969689163661345
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09892838742916021
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1648870856946591
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.29061909668555724
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5034792038193298
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5420530654301913
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3249220491378387
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5312982998454405
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5312982998454405
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5312982998454405
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5618238021638331
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5312982998454405
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5312982998454405
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5312982998454405
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4845440494590417
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.032712089987978706
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09813626996393612
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1635604499398935
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2885840631976644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4986060701912577
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.536385883565173
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.32255571092212365
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5162287480680062
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5162287480680062
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5162287480680062
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5498454404945904
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5162287480680062
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5162287480680062
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5162287480680062
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4728748068006182
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03184054611025245
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09552163833075734
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.15920273055126222
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2826893353941267
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4859196209845146
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5218154301906238
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.31600673687689496
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.49265842349304484
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.49265842349304484
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.49304482225656876
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5193199381761978
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.49265842349304484
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.49265842349304484
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4927357032457496
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.44837712519319944
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.030391550747037612
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09117465224111283
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.15200927357032457
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2676391035548686
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4617161176693884
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4971342091705308
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3035061522343962
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.42619783616692425
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42619783616692425
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42619783616692425
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.45904173106646057
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42619783616692425
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4259402369912416
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.42604327666151465
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.39316074188562594
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.026257942641250212
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0787223080886141
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.13123819337111453
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23491971492357888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4030993901354209
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4316718186501803
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2688982568901479
name: Cosine Map@100
---
# ModernBERT Embed base fitness health Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-5-epochs-25k")
# Run inference
sentences = [
'CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy \nFEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/\nFamily medicine, Ghana).\nMembers of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER',
'Developmental pediatrician research and studies',
'materials needed for plaster of Paris casts',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5371 |
| cosine_accuracy@3 | 0.5375 |
| cosine_accuracy@5 | 0.5375 |
| cosine_accuracy@10 | 0.5665 |
| cosine_precision@1 | 0.5371 |
| cosine_precision@3 | 0.5372 |
| cosine_precision@5 | 0.5372 |
| cosine_precision@10 | 0.489 |
| cosine_recall@1 | 0.033 |
| cosine_recall@3 | 0.0989 |
| cosine_recall@5 | 0.1649 |
| cosine_recall@10 | 0.2906 |
| **cosine_ndcg@10** | **0.5035** |
| cosine_mrr@10 | 0.5421 |
| cosine_map@100 | 0.3249 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5313 |
| cosine_accuracy@3 | 0.5313 |
| cosine_accuracy@5 | 0.5313 |
| cosine_accuracy@10 | 0.5618 |
| cosine_precision@1 | 0.5313 |
| cosine_precision@3 | 0.5313 |
| cosine_precision@5 | 0.5313 |
| cosine_precision@10 | 0.4845 |
| cosine_recall@1 | 0.0327 |
| cosine_recall@3 | 0.0981 |
| cosine_recall@5 | 0.1636 |
| cosine_recall@10 | 0.2886 |
| **cosine_ndcg@10** | **0.4986** |
| cosine_mrr@10 | 0.5364 |
| cosine_map@100 | 0.3226 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5162 |
| cosine_accuracy@3 | 0.5162 |
| cosine_accuracy@5 | 0.5162 |
| cosine_accuracy@10 | 0.5498 |
| cosine_precision@1 | 0.5162 |
| cosine_precision@3 | 0.5162 |
| cosine_precision@5 | 0.5162 |
| cosine_precision@10 | 0.4729 |
| cosine_recall@1 | 0.0318 |
| cosine_recall@3 | 0.0955 |
| cosine_recall@5 | 0.1592 |
| cosine_recall@10 | 0.2827 |
| **cosine_ndcg@10** | **0.4859** |
| cosine_mrr@10 | 0.5218 |
| cosine_map@100 | 0.316 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.4927 |
| cosine_accuracy@3 | 0.4927 |
| cosine_accuracy@5 | 0.493 |
| cosine_accuracy@10 | 0.5193 |
| cosine_precision@1 | 0.4927 |
| cosine_precision@3 | 0.4927 |
| cosine_precision@5 | 0.4927 |
| cosine_precision@10 | 0.4484 |
| cosine_recall@1 | 0.0304 |
| cosine_recall@3 | 0.0912 |
| cosine_recall@5 | 0.152 |
| cosine_recall@10 | 0.2676 |
| **cosine_ndcg@10** | **0.4617** |
| cosine_mrr@10 | 0.4971 |
| cosine_map@100 | 0.3035 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.4262 |
| cosine_accuracy@3 | 0.4262 |
| cosine_accuracy@5 | 0.4262 |
| cosine_accuracy@10 | 0.459 |
| cosine_precision@1 | 0.4262 |
| cosine_precision@3 | 0.4259 |
| cosine_precision@5 | 0.426 |
| cosine_precision@10 | 0.3932 |
| cosine_recall@1 | 0.0263 |
| cosine_recall@3 | 0.0787 |
| cosine_recall@5 | 0.1312 |
| cosine_recall@10 | 0.2349 |
| **cosine_ndcg@10** | **0.4031** |
| cosine_mrr@10 | 0.4317 |
| cosine_map@100 | 0.2689 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 23,290 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
5. Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and mechanisms of exercise training for knee osteoarthritis.
Frontiers in Physiology. 2021;12. 6. Büssing A, Ostermann T, Lüdtke R, Michalsen A. Effects of yoga interventions on pain and pain-associated disability: a meta-analysis. J Pain. 2012;13(1):1-9. doi:10.1016/j.jpain.2011.10.001 7. Wren AA, Wright MA, Carson JW, Keefe FJ. Yoga for persistent pain: new findings and directions for an ancient practice. Pain. 2011;152(3):477-480. doi:10.1016/j.pain.2010.11.017 8. Lauche R, Hunter DJ, Adams J, Cramer H. Yoga for osteoarthritis: a systematic review and meta-analysis. Curr Rheumatol Rep. 2019;21(9):47. doi:10.1007/s11926-019-0846-5 9. Zhang Q, Young L, Li F. Network meta-analysis of various nonpharmacological interventions on pain relief in
| yoga for persistent pain management
|
| CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy
FEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/
Family medicine, Ghana).
Members of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER
| Developmental pediatrician research and studies
|
| JAMA Network Open. 2025;8(4):e253698. doi:10.1001/jamanetworkopen.2025.3698
(Reprinted)
April 8, 2025
| JAMA Network Open 2025 study on medical research
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters