kolerk commited on
Commit
a63d3ca
·
verified ·
1 Parent(s): 97c9c0e

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5_VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 128000,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2_5_vl",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.51.3",
34
+ "use_cache": false,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "depth": 32,
39
+ "fullatt_block_indexes": [
40
+ 7,
41
+ 15,
42
+ 23,
43
+ 31
44
+ ],
45
+ "hidden_act": "silu",
46
+ "hidden_size": 1280,
47
+ "in_channels": 3,
48
+ "in_chans": 3,
49
+ "intermediate_size": 3420,
50
+ "model_type": "qwen2_5_vl",
51
+ "num_heads": 16,
52
+ "out_hidden_size": 2048,
53
+ "patch_size": 14,
54
+ "spatial_merge_size": 2,
55
+ "spatial_patch_size": 14,
56
+ "temporal_patch_size": 2,
57
+ "tokens_per_second": 2,
58
+ "torch_dtype": "float32",
59
+ "window_size": 112
60
+ },
61
+ "vision_end_token_id": 151653,
62
+ "vision_start_token_id": 151652,
63
+ "vision_token_id": 151654,
64
+ "vocab_size": 151936
65
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.51.3",
15
+ "use_cache": false
16
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5ebe05d9f581603181f4d10f87d62155f78ce92325308f93056973f4109696
3
+ size 4997750760
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58e3673555efc703e2a513e6dd9fad7e9eda9b3fad9ea53fc95aafef6f057d8
3
+ size 3133917248
model.safetensors.index.json ADDED
@@ -0,0 +1,832 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8131575808
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
824
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
829
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
830
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
831
+ }
832
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 501760,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "processor_class": "Qwen2_5_VLProcessor",
207
+ "split_special_tokens": false,
208
+ "tokenizer_class": "Qwen2Tokenizer",
209
+ "unk_token": null
210
+ }
trainer_state.json ADDED
@@ -0,0 +1,1434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.49875311720698257,
6
+ "eval_steps": 500,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "completion_length": 53.11458396911621,
14
+ "epoch": 0.004987531172069825,
15
+ "grad_norm": 2.589242696762085,
16
+ "kl": 0.0,
17
+ "learning_rate": 1e-06,
18
+ "loss": -0.0,
19
+ "reward": 1.84375,
20
+ "reward_std": 0.5593957304954529,
21
+ "rewards/format_reward": 1.0,
22
+ "rewards/type_reward": 0.5625000298023224,
23
+ "rewards/value_reward": 0.2812500074505806,
24
+ "step": 1
25
+ },
26
+ {
27
+ "completion_length": 54.47916793823242,
28
+ "epoch": 0.00997506234413965,
29
+ "grad_norm": 4.696207523345947,
30
+ "kl": 0.00023698806762695312,
31
+ "learning_rate": 1e-06,
32
+ "loss": 0.0,
33
+ "reward": 1.6979166865348816,
34
+ "reward_std": 0.47182925045490265,
35
+ "rewards/format_reward": 1.0,
36
+ "rewards/type_reward": 0.5208333432674408,
37
+ "rewards/value_reward": 0.1770833395421505,
38
+ "step": 2
39
+ },
40
+ {
41
+ "completion_length": 58.270835876464844,
42
+ "epoch": 0.014962593516209476,
43
+ "grad_norm": 6.94147253036499,
44
+ "kl": 0.00024080276489257812,
45
+ "learning_rate": 1e-06,
46
+ "loss": 0.0,
47
+ "reward": 1.6145833730697632,
48
+ "reward_std": 0.38977013528347015,
49
+ "rewards/format_reward": 1.0,
50
+ "rewards/type_reward": 0.5104166865348816,
51
+ "rewards/value_reward": 0.1041666716337204,
52
+ "step": 3
53
+ },
54
+ {
55
+ "completion_length": 43.98958396911621,
56
+ "epoch": 0.0199501246882793,
57
+ "grad_norm": 2.8042056560516357,
58
+ "kl": 0.0001938343048095703,
59
+ "learning_rate": 1e-06,
60
+ "loss": 0.0,
61
+ "reward": 1.7187501192092896,
62
+ "reward_std": 0.5527614653110504,
63
+ "rewards/format_reward": 1.0,
64
+ "rewards/type_reward": 0.53125,
65
+ "rewards/value_reward": 0.1875000074505806,
66
+ "step": 4
67
+ },
68
+ {
69
+ "completion_length": 58.86458396911621,
70
+ "epoch": 0.02493765586034913,
71
+ "grad_norm": 6.230152130126953,
72
+ "kl": 0.00038242340087890625,
73
+ "learning_rate": 1e-06,
74
+ "loss": 0.0,
75
+ "reward": 1.9895833730697632,
76
+ "reward_std": 0.5839709639549255,
77
+ "rewards/format_reward": 1.0,
78
+ "rewards/type_reward": 0.7395833432674408,
79
+ "rewards/value_reward": 0.25,
80
+ "step": 5
81
+ },
82
+ {
83
+ "completion_length": 50.95833396911621,
84
+ "epoch": 0.029925187032418952,
85
+ "grad_norm": 5.232593536376953,
86
+ "kl": 0.0010242462158203125,
87
+ "learning_rate": 1e-06,
88
+ "loss": 0.0,
89
+ "reward": 1.6562500596046448,
90
+ "reward_std": 0.5727283954620361,
91
+ "rewards/format_reward": 1.0,
92
+ "rewards/type_reward": 0.5000000298023224,
93
+ "rewards/value_reward": 0.1562500074505806,
94
+ "step": 6
95
+ },
96
+ {
97
+ "completion_length": 55.6875,
98
+ "epoch": 0.034912718204488775,
99
+ "grad_norm": 4.557653427124023,
100
+ "kl": 0.000457763671875,
101
+ "learning_rate": 1e-06,
102
+ "loss": 0.0,
103
+ "reward": 1.6041666865348816,
104
+ "reward_std": 0.3993261456489563,
105
+ "rewards/format_reward": 1.0,
106
+ "rewards/type_reward": 0.5312500149011612,
107
+ "rewards/value_reward": 0.0729166679084301,
108
+ "step": 7
109
+ },
110
+ {
111
+ "completion_length": 53.14583396911621,
112
+ "epoch": 0.0399002493765586,
113
+ "grad_norm": 6.5244011878967285,
114
+ "kl": 0.0004901885986328125,
115
+ "learning_rate": 1e-06,
116
+ "loss": 0.0,
117
+ "reward": 1.8125000596046448,
118
+ "reward_std": 0.511884331703186,
119
+ "rewards/format_reward": 1.0,
120
+ "rewards/type_reward": 0.6458333730697632,
121
+ "rewards/value_reward": 0.1666666716337204,
122
+ "step": 8
123
+ },
124
+ {
125
+ "completion_length": 52.87500190734863,
126
+ "epoch": 0.04488778054862843,
127
+ "grad_norm": 3.019259452819824,
128
+ "kl": 0.0007963180541992188,
129
+ "learning_rate": 1e-06,
130
+ "loss": 0.0,
131
+ "reward": 1.5000000596046448,
132
+ "reward_std": 0.5527279376983643,
133
+ "rewards/format_reward": 1.0,
134
+ "rewards/type_reward": 0.4062500149011612,
135
+ "rewards/value_reward": 0.0937500037252903,
136
+ "step": 9
137
+ },
138
+ {
139
+ "completion_length": 56.01041793823242,
140
+ "epoch": 0.04987531172069826,
141
+ "grad_norm": 41.213287353515625,
142
+ "kl": 0.0005130767822265625,
143
+ "learning_rate": 1e-06,
144
+ "loss": 0.0,
145
+ "reward": 1.9375000596046448,
146
+ "reward_std": 0.5250107049942017,
147
+ "rewards/format_reward": 1.0,
148
+ "rewards/type_reward": 0.6979166865348816,
149
+ "rewards/value_reward": 0.2395833358168602,
150
+ "step": 10
151
+ },
152
+ {
153
+ "completion_length": 55.28125190734863,
154
+ "epoch": 0.05486284289276808,
155
+ "grad_norm": 2.5374794006347656,
156
+ "kl": 0.0009784698486328125,
157
+ "learning_rate": 1e-06,
158
+ "loss": 0.0,
159
+ "reward": 1.78125,
160
+ "reward_std": 0.5179632753133774,
161
+ "rewards/format_reward": 1.0,
162
+ "rewards/type_reward": 0.6354166865348816,
163
+ "rewards/value_reward": 0.1458333358168602,
164
+ "step": 11
165
+ },
166
+ {
167
+ "completion_length": 51.43750190734863,
168
+ "epoch": 0.059850374064837904,
169
+ "grad_norm": 3.0466294288635254,
170
+ "kl": 0.001834869384765625,
171
+ "learning_rate": 1e-06,
172
+ "loss": 0.0001,
173
+ "reward": 1.6770833730697632,
174
+ "reward_std": 0.5379315614700317,
175
+ "rewards/format_reward": 1.0,
176
+ "rewards/type_reward": 0.5625000298023224,
177
+ "rewards/value_reward": 0.11458333395421505,
178
+ "step": 12
179
+ },
180
+ {
181
+ "completion_length": 47.427085876464844,
182
+ "epoch": 0.06483790523690773,
183
+ "grad_norm": 26.806480407714844,
184
+ "kl": 0.0010318756103515625,
185
+ "learning_rate": 1e-06,
186
+ "loss": 0.0,
187
+ "reward": 1.7187500596046448,
188
+ "reward_std": 0.4230456277728081,
189
+ "rewards/format_reward": 1.0,
190
+ "rewards/type_reward": 0.583333358168602,
191
+ "rewards/value_reward": 0.1354166716337204,
192
+ "step": 13
193
+ },
194
+ {
195
+ "completion_length": 50.02083396911621,
196
+ "epoch": 0.06982543640897755,
197
+ "grad_norm": 1.8247559070587158,
198
+ "kl": 0.0010204315185546875,
199
+ "learning_rate": 1e-06,
200
+ "loss": 0.0,
201
+ "reward": 1.9375001192092896,
202
+ "reward_std": 0.4463787227869034,
203
+ "rewards/format_reward": 1.0,
204
+ "rewards/type_reward": 0.6979166865348816,
205
+ "rewards/value_reward": 0.2395833432674408,
206
+ "step": 14
207
+ },
208
+ {
209
+ "completion_length": 52.68750190734863,
210
+ "epoch": 0.07481296758104738,
211
+ "grad_norm": 2.3722641468048096,
212
+ "kl": 0.0010986328125,
213
+ "learning_rate": 1e-06,
214
+ "loss": 0.0,
215
+ "reward": 1.9062500596046448,
216
+ "reward_std": 0.4055413603782654,
217
+ "rewards/format_reward": 1.0,
218
+ "rewards/type_reward": 0.6666666865348816,
219
+ "rewards/value_reward": 0.2395833432674408,
220
+ "step": 15
221
+ },
222
+ {
223
+ "completion_length": 53.23958396911621,
224
+ "epoch": 0.0798004987531172,
225
+ "grad_norm": 3.7819693088531494,
226
+ "kl": 0.001567840576171875,
227
+ "learning_rate": 1e-06,
228
+ "loss": 0.0001,
229
+ "reward": 1.8645833730697632,
230
+ "reward_std": 0.5996341705322266,
231
+ "rewards/format_reward": 1.0,
232
+ "rewards/type_reward": 0.6875000298023224,
233
+ "rewards/value_reward": 0.1770833358168602,
234
+ "step": 16
235
+ },
236
+ {
237
+ "completion_length": 49.02083396911621,
238
+ "epoch": 0.08478802992518704,
239
+ "grad_norm": 2.7006280422210693,
240
+ "kl": 0.00139617919921875,
241
+ "learning_rate": 1e-06,
242
+ "loss": 0.0001,
243
+ "reward": 1.7187500596046448,
244
+ "reward_std": 0.4375252425670624,
245
+ "rewards/format_reward": 1.0,
246
+ "rewards/type_reward": 0.6041666865348816,
247
+ "rewards/value_reward": 0.1145833395421505,
248
+ "step": 17
249
+ },
250
+ {
251
+ "completion_length": 57.10416793823242,
252
+ "epoch": 0.08977556109725686,
253
+ "grad_norm": 10.572280883789062,
254
+ "kl": 0.001865386962890625,
255
+ "learning_rate": 1e-06,
256
+ "loss": 0.0001,
257
+ "reward": 1.7395833730697632,
258
+ "reward_std": 0.5867283642292023,
259
+ "rewards/format_reward": 0.9895833432674408,
260
+ "rewards/type_reward": 0.5416666716337204,
261
+ "rewards/value_reward": 0.2083333432674408,
262
+ "step": 18
263
+ },
264
+ {
265
+ "completion_length": 52.40625190734863,
266
+ "epoch": 0.09476309226932668,
267
+ "grad_norm": 3.5348286628723145,
268
+ "kl": 0.00434112548828125,
269
+ "learning_rate": 1e-06,
270
+ "loss": 0.0002,
271
+ "reward": 1.7187500596046448,
272
+ "reward_std": 0.5008201450109482,
273
+ "rewards/format_reward": 0.9895833432674408,
274
+ "rewards/type_reward": 0.5833333730697632,
275
+ "rewards/value_reward": 0.1458333395421505,
276
+ "step": 19
277
+ },
278
+ {
279
+ "completion_length": 54.54166793823242,
280
+ "epoch": 0.09975062344139651,
281
+ "grad_norm": 11.005522727966309,
282
+ "kl": 0.00327301025390625,
283
+ "learning_rate": 1e-06,
284
+ "loss": 0.0001,
285
+ "reward": 1.8645833730697632,
286
+ "reward_std": 0.42722317576408386,
287
+ "rewards/format_reward": 1.0,
288
+ "rewards/type_reward": 0.6354166865348816,
289
+ "rewards/value_reward": 0.2291666716337204,
290
+ "step": 20
291
+ },
292
+ {
293
+ "completion_length": 59.35416793823242,
294
+ "epoch": 0.10473815461346633,
295
+ "grad_norm": 3.138442039489746,
296
+ "kl": 0.0045928955078125,
297
+ "learning_rate": 1e-06,
298
+ "loss": 0.0002,
299
+ "reward": 1.8750000596046448,
300
+ "reward_std": 0.4148429334163666,
301
+ "rewards/format_reward": 1.0,
302
+ "rewards/type_reward": 0.6666666865348816,
303
+ "rewards/value_reward": 0.2083333358168602,
304
+ "step": 21
305
+ },
306
+ {
307
+ "completion_length": 57.17708396911621,
308
+ "epoch": 0.10972568578553615,
309
+ "grad_norm": 10.232250213623047,
310
+ "kl": 0.001987457275390625,
311
+ "learning_rate": 1e-06,
312
+ "loss": 0.0001,
313
+ "reward": 1.6145833730697632,
314
+ "reward_std": 0.331511914730072,
315
+ "rewards/format_reward": 1.0,
316
+ "rewards/type_reward": 0.53125,
317
+ "rewards/value_reward": 0.0833333358168602,
318
+ "step": 22
319
+ },
320
+ {
321
+ "completion_length": 55.29166793823242,
322
+ "epoch": 0.11471321695760599,
323
+ "grad_norm": 3.6366941928863525,
324
+ "kl": 0.0028839111328125,
325
+ "learning_rate": 1e-06,
326
+ "loss": 0.0001,
327
+ "reward": 1.7916666865348816,
328
+ "reward_std": 0.48244550824165344,
329
+ "rewards/format_reward": 1.0,
330
+ "rewards/type_reward": 0.5937500298023224,
331
+ "rewards/value_reward": 0.197916679084301,
332
+ "step": 23
333
+ },
334
+ {
335
+ "completion_length": 55.91666793823242,
336
+ "epoch": 0.11970074812967581,
337
+ "grad_norm": 4.003420829772949,
338
+ "kl": 0.00351715087890625,
339
+ "learning_rate": 1e-06,
340
+ "loss": 0.0001,
341
+ "reward": 2.0625001192092896,
342
+ "reward_std": 0.5210920870304108,
343
+ "rewards/format_reward": 1.0,
344
+ "rewards/type_reward": 0.7812500298023224,
345
+ "rewards/value_reward": 0.2812500074505806,
346
+ "step": 24
347
+ },
348
+ {
349
+ "completion_length": 52.16666793823242,
350
+ "epoch": 0.12468827930174564,
351
+ "grad_norm": 3.123845100402832,
352
+ "kl": 0.00356292724609375,
353
+ "learning_rate": 1e-06,
354
+ "loss": 0.0001,
355
+ "reward": 1.6875,
356
+ "reward_std": 0.39690303802490234,
357
+ "rewards/format_reward": 1.0,
358
+ "rewards/type_reward": 0.5729166865348816,
359
+ "rewards/value_reward": 0.1145833395421505,
360
+ "step": 25
361
+ },
362
+ {
363
+ "completion_length": 50.53125190734863,
364
+ "epoch": 0.12967581047381546,
365
+ "grad_norm": 2.6504132747650146,
366
+ "kl": 0.0029296875,
367
+ "learning_rate": 1e-06,
368
+ "loss": 0.0001,
369
+ "reward": 1.5833333730697632,
370
+ "reward_std": 0.3844688832759857,
371
+ "rewards/format_reward": 1.0,
372
+ "rewards/type_reward": 0.5000000298023224,
373
+ "rewards/value_reward": 0.0833333358168602,
374
+ "step": 26
375
+ },
376
+ {
377
+ "completion_length": 55.36458396911621,
378
+ "epoch": 0.13466334164588528,
379
+ "grad_norm": 3.807915210723877,
380
+ "kl": 0.0046844482421875,
381
+ "learning_rate": 1e-06,
382
+ "loss": 0.0002,
383
+ "reward": 2.020833373069763,
384
+ "reward_std": 0.5475624799728394,
385
+ "rewards/format_reward": 1.0,
386
+ "rewards/type_reward": 0.6979166865348816,
387
+ "rewards/value_reward": 0.3229166716337204,
388
+ "step": 27
389
+ },
390
+ {
391
+ "completion_length": 57.47916793823242,
392
+ "epoch": 0.1396508728179551,
393
+ "grad_norm": 5.694674491882324,
394
+ "kl": 0.00274658203125,
395
+ "learning_rate": 1e-06,
396
+ "loss": 0.0001,
397
+ "reward": 2.114583373069763,
398
+ "reward_std": 0.4728766232728958,
399
+ "rewards/format_reward": 0.9895833432674408,
400
+ "rewards/type_reward": 0.7500000298023224,
401
+ "rewards/value_reward": 0.375,
402
+ "step": 28
403
+ },
404
+ {
405
+ "completion_length": 55.41666793823242,
406
+ "epoch": 0.14463840399002495,
407
+ "grad_norm": 2.54262638092041,
408
+ "kl": 0.00244140625,
409
+ "learning_rate": 1e-06,
410
+ "loss": 0.0001,
411
+ "reward": 1.8125,
412
+ "reward_std": 0.4684932827949524,
413
+ "rewards/format_reward": 1.0,
414
+ "rewards/type_reward": 0.6458333432674408,
415
+ "rewards/value_reward": 0.1666666716337204,
416
+ "step": 29
417
+ },
418
+ {
419
+ "completion_length": 56.33333396911621,
420
+ "epoch": 0.14962593516209477,
421
+ "grad_norm": 3.026751756668091,
422
+ "kl": 0.003482818603515625,
423
+ "learning_rate": 1e-06,
424
+ "loss": 0.0001,
425
+ "reward": 2.1250001192092896,
426
+ "reward_std": 0.5056642293930054,
427
+ "rewards/format_reward": 1.0,
428
+ "rewards/type_reward": 0.7083333432674408,
429
+ "rewards/value_reward": 0.4166666865348816,
430
+ "step": 30
431
+ },
432
+ {
433
+ "completion_length": 48.06250190734863,
434
+ "epoch": 0.1546134663341646,
435
+ "grad_norm": 4.673459529876709,
436
+ "kl": 0.00234222412109375,
437
+ "learning_rate": 1e-06,
438
+ "loss": 0.0001,
439
+ "reward": 1.8437500596046448,
440
+ "reward_std": 0.344024121761322,
441
+ "rewards/format_reward": 0.9895833432674408,
442
+ "rewards/type_reward": 0.7395833432674408,
443
+ "rewards/value_reward": 0.1145833358168602,
444
+ "step": 31
445
+ },
446
+ {
447
+ "completion_length": 51.958335876464844,
448
+ "epoch": 0.1596009975062344,
449
+ "grad_norm": 3.077587366104126,
450
+ "kl": 0.00388336181640625,
451
+ "learning_rate": 1e-06,
452
+ "loss": 0.0002,
453
+ "reward": 1.7187500596046448,
454
+ "reward_std": 0.46897804737091064,
455
+ "rewards/format_reward": 1.0,
456
+ "rewards/type_reward": 0.5416666716337204,
457
+ "rewards/value_reward": 0.1770833432674408,
458
+ "step": 32
459
+ },
460
+ {
461
+ "completion_length": 53.21875190734863,
462
+ "epoch": 0.16458852867830423,
463
+ "grad_norm": 8.769026756286621,
464
+ "kl": 0.00225830078125,
465
+ "learning_rate": 1e-06,
466
+ "loss": 0.0001,
467
+ "reward": 1.8541667461395264,
468
+ "reward_std": 0.3557152897119522,
469
+ "rewards/format_reward": 1.0,
470
+ "rewards/type_reward": 0.71875,
471
+ "rewards/value_reward": 0.1354166716337204,
472
+ "step": 33
473
+ },
474
+ {
475
+ "completion_length": 52.69791793823242,
476
+ "epoch": 0.16957605985037408,
477
+ "grad_norm": 2.985428810119629,
478
+ "kl": 0.00567626953125,
479
+ "learning_rate": 1e-06,
480
+ "loss": 0.0002,
481
+ "reward": 1.9166666865348816,
482
+ "reward_std": 0.39310361444950104,
483
+ "rewards/format_reward": 1.0,
484
+ "rewards/type_reward": 0.7083333730697632,
485
+ "rewards/value_reward": 0.2083333432674408,
486
+ "step": 34
487
+ },
488
+ {
489
+ "completion_length": 51.50000190734863,
490
+ "epoch": 0.1745635910224439,
491
+ "grad_norm": 1.9351848363876343,
492
+ "kl": 0.006256103515625,
493
+ "learning_rate": 1e-06,
494
+ "loss": 0.0002,
495
+ "reward": 1.9166667461395264,
496
+ "reward_std": 0.35025089979171753,
497
+ "rewards/format_reward": 1.0,
498
+ "rewards/type_reward": 0.6979166865348816,
499
+ "rewards/value_reward": 0.21875,
500
+ "step": 35
501
+ },
502
+ {
503
+ "completion_length": 56.17708396911621,
504
+ "epoch": 0.17955112219451372,
505
+ "grad_norm": 5.072805404663086,
506
+ "kl": 0.0033111572265625,
507
+ "learning_rate": 1e-06,
508
+ "loss": 0.0001,
509
+ "reward": 2.114583373069763,
510
+ "reward_std": 0.41180241107940674,
511
+ "rewards/format_reward": 1.0,
512
+ "rewards/type_reward": 0.7916666865348816,
513
+ "rewards/value_reward": 0.3229166716337204,
514
+ "step": 36
515
+ },
516
+ {
517
+ "completion_length": 50.739585876464844,
518
+ "epoch": 0.18453865336658354,
519
+ "grad_norm": 12.998750686645508,
520
+ "kl": 0.003429412841796875,
521
+ "learning_rate": 1e-06,
522
+ "loss": 0.0001,
523
+ "reward": 2.0104167461395264,
524
+ "reward_std": 0.2894075810909271,
525
+ "rewards/format_reward": 1.0,
526
+ "rewards/type_reward": 0.8229166865348816,
527
+ "rewards/value_reward": 0.1875,
528
+ "step": 37
529
+ },
530
+ {
531
+ "completion_length": 52.97916793823242,
532
+ "epoch": 0.18952618453865336,
533
+ "grad_norm": 3.0100650787353516,
534
+ "kl": 0.0068359375,
535
+ "learning_rate": 1e-06,
536
+ "loss": 0.0003,
537
+ "reward": 1.7187500596046448,
538
+ "reward_std": 0.4062570631504059,
539
+ "rewards/format_reward": 1.0,
540
+ "rewards/type_reward": 0.5520833432674408,
541
+ "rewards/value_reward": 0.1666666716337204,
542
+ "step": 38
543
+ },
544
+ {
545
+ "completion_length": 50.12500190734863,
546
+ "epoch": 0.19451371571072318,
547
+ "grad_norm": 5.043798446655273,
548
+ "kl": 0.008544921875,
549
+ "learning_rate": 1e-06,
550
+ "loss": 0.0003,
551
+ "reward": 1.8437501192092896,
552
+ "reward_std": 0.44689737260341644,
553
+ "rewards/format_reward": 1.0,
554
+ "rewards/type_reward": 0.614583358168602,
555
+ "rewards/value_reward": 0.2291666679084301,
556
+ "step": 39
557
+ },
558
+ {
559
+ "completion_length": 52.46875190734863,
560
+ "epoch": 0.19950124688279303,
561
+ "grad_norm": 2.5372238159179688,
562
+ "kl": 0.00316619873046875,
563
+ "learning_rate": 1e-06,
564
+ "loss": 0.0001,
565
+ "reward": 2.1979167461395264,
566
+ "reward_std": 0.31072379648685455,
567
+ "rewards/format_reward": 1.0,
568
+ "rewards/type_reward": 0.7395833432674408,
569
+ "rewards/value_reward": 0.4583333432674408,
570
+ "step": 40
571
+ },
572
+ {
573
+ "completion_length": 57.85416793823242,
574
+ "epoch": 0.20448877805486285,
575
+ "grad_norm": 7.756105899810791,
576
+ "kl": 0.022674560546875,
577
+ "learning_rate": 1e-06,
578
+ "loss": 0.0009,
579
+ "reward": 1.7291667461395264,
580
+ "reward_std": 0.5042311251163483,
581
+ "rewards/format_reward": 1.0,
582
+ "rewards/type_reward": 0.5000000149011612,
583
+ "rewards/value_reward": 0.229166679084301,
584
+ "step": 41
585
+ },
586
+ {
587
+ "completion_length": 49.89583396911621,
588
+ "epoch": 0.20947630922693267,
589
+ "grad_norm": 7.1992363929748535,
590
+ "kl": 0.00597381591796875,
591
+ "learning_rate": 1e-06,
592
+ "loss": 0.0002,
593
+ "reward": 1.770833432674408,
594
+ "reward_std": 0.36754731833934784,
595
+ "rewards/format_reward": 1.0,
596
+ "rewards/type_reward": 0.614583358168602,
597
+ "rewards/value_reward": 0.15625,
598
+ "step": 42
599
+ },
600
+ {
601
+ "completion_length": 49.33333396911621,
602
+ "epoch": 0.2144638403990025,
603
+ "grad_norm": 3.374178886413574,
604
+ "kl": 0.0060272216796875,
605
+ "learning_rate": 1e-06,
606
+ "loss": 0.0002,
607
+ "reward": 1.75,
608
+ "reward_std": 0.3439617305994034,
609
+ "rewards/format_reward": 1.0,
610
+ "rewards/type_reward": 0.5833333730697632,
611
+ "rewards/value_reward": 0.1666666716337204,
612
+ "step": 43
613
+ },
614
+ {
615
+ "completion_length": 50.02083396911621,
616
+ "epoch": 0.2194513715710723,
617
+ "grad_norm": 2.0867555141448975,
618
+ "kl": 0.015594482421875,
619
+ "learning_rate": 1e-06,
620
+ "loss": 0.0006,
621
+ "reward": 2.0625,
622
+ "reward_std": 0.3554982841014862,
623
+ "rewards/format_reward": 1.0,
624
+ "rewards/type_reward": 0.7187500298023224,
625
+ "rewards/value_reward": 0.3437500149011612,
626
+ "step": 44
627
+ },
628
+ {
629
+ "completion_length": 51.29166793823242,
630
+ "epoch": 0.22443890274314215,
631
+ "grad_norm": 3.5470542907714844,
632
+ "kl": 0.0106964111328125,
633
+ "learning_rate": 1e-06,
634
+ "loss": 0.0004,
635
+ "reward": 1.7708333730697632,
636
+ "reward_std": 0.34074608981609344,
637
+ "rewards/format_reward": 1.0,
638
+ "rewards/type_reward": 0.6145833432674408,
639
+ "rewards/value_reward": 0.1562500037252903,
640
+ "step": 45
641
+ },
642
+ {
643
+ "completion_length": 50.625,
644
+ "epoch": 0.22942643391521197,
645
+ "grad_norm": 4.836516380310059,
646
+ "kl": 0.00927734375,
647
+ "learning_rate": 1e-06,
648
+ "loss": 0.0004,
649
+ "reward": 1.7604166865348816,
650
+ "reward_std": 0.3411097154021263,
651
+ "rewards/format_reward": 1.0,
652
+ "rewards/type_reward": 0.6145833730697632,
653
+ "rewards/value_reward": 0.1458333358168602,
654
+ "step": 46
655
+ },
656
+ {
657
+ "completion_length": 46.27083396911621,
658
+ "epoch": 0.2344139650872818,
659
+ "grad_norm": 2.7732608318328857,
660
+ "kl": 0.013458251953125,
661
+ "learning_rate": 1e-06,
662
+ "loss": 0.0005,
663
+ "reward": 1.7916667461395264,
664
+ "reward_std": 0.36258386075496674,
665
+ "rewards/format_reward": 1.0,
666
+ "rewards/type_reward": 0.5625000298023224,
667
+ "rewards/value_reward": 0.2291666716337204,
668
+ "step": 47
669
+ },
670
+ {
671
+ "completion_length": 46.39583396911621,
672
+ "epoch": 0.23940149625935161,
673
+ "grad_norm": 4.2999653816223145,
674
+ "kl": 0.01378631591796875,
675
+ "learning_rate": 1e-06,
676
+ "loss": 0.0006,
677
+ "reward": 1.7708333730697632,
678
+ "reward_std": 0.31213822960853577,
679
+ "rewards/format_reward": 1.0,
680
+ "rewards/type_reward": 0.6979166865348816,
681
+ "rewards/value_reward": 0.0729166716337204,
682
+ "step": 48
683
+ },
684
+ {
685
+ "completion_length": 52.26041793823242,
686
+ "epoch": 0.24438902743142144,
687
+ "grad_norm": 10.70241928100586,
688
+ "kl": 0.0051727294921875,
689
+ "learning_rate": 1e-06,
690
+ "loss": 0.0002,
691
+ "reward": 2.0104167461395264,
692
+ "reward_std": 0.5115884244441986,
693
+ "rewards/format_reward": 1.0,
694
+ "rewards/type_reward": 0.7291666865348816,
695
+ "rewards/value_reward": 0.28125,
696
+ "step": 49
697
+ },
698
+ {
699
+ "completion_length": 47.614585876464844,
700
+ "epoch": 0.24937655860349128,
701
+ "grad_norm": 5.545669078826904,
702
+ "kl": 0.0100555419921875,
703
+ "learning_rate": 1e-06,
704
+ "loss": 0.0004,
705
+ "reward": 1.8645833730697632,
706
+ "reward_std": 0.3386664316058159,
707
+ "rewards/format_reward": 1.0,
708
+ "rewards/type_reward": 0.625,
709
+ "rewards/value_reward": 0.2395833358168602,
710
+ "step": 50
711
+ },
712
+ {
713
+ "completion_length": 49.68750190734863,
714
+ "epoch": 0.2543640897755611,
715
+ "grad_norm": 3.6107425689697266,
716
+ "kl": 0.0140380859375,
717
+ "learning_rate": 1e-06,
718
+ "loss": 0.0006,
719
+ "reward": 2.2291667461395264,
720
+ "reward_std": 0.3583437502384186,
721
+ "rewards/format_reward": 1.0,
722
+ "rewards/type_reward": 0.9375,
723
+ "rewards/value_reward": 0.2916666716337204,
724
+ "step": 51
725
+ },
726
+ {
727
+ "completion_length": 53.51041793823242,
728
+ "epoch": 0.2593516209476309,
729
+ "grad_norm": 3.2154581546783447,
730
+ "kl": 0.0047760009765625,
731
+ "learning_rate": 1e-06,
732
+ "loss": 0.0002,
733
+ "reward": 1.6250000596046448,
734
+ "reward_std": 0.27929287403821945,
735
+ "rewards/format_reward": 1.0,
736
+ "rewards/type_reward": 0.5,
737
+ "rewards/value_reward": 0.12500000558793545,
738
+ "step": 52
739
+ },
740
+ {
741
+ "completion_length": 50.44791793823242,
742
+ "epoch": 0.26433915211970077,
743
+ "grad_norm": 1.3889214992523193,
744
+ "kl": 0.004791259765625,
745
+ "learning_rate": 1e-06,
746
+ "loss": 0.0002,
747
+ "reward": 1.96875,
748
+ "reward_std": 0.21564548462629318,
749
+ "rewards/format_reward": 1.0,
750
+ "rewards/type_reward": 0.7187500298023224,
751
+ "rewards/value_reward": 0.2500000074505806,
752
+ "step": 53
753
+ },
754
+ {
755
+ "completion_length": 49.26041793823242,
756
+ "epoch": 0.26932668329177056,
757
+ "grad_norm": 3.8615550994873047,
758
+ "kl": 0.00653076171875,
759
+ "learning_rate": 1e-06,
760
+ "loss": 0.0003,
761
+ "reward": 1.9791667461395264,
762
+ "reward_std": 0.547309935092926,
763
+ "rewards/format_reward": 1.0,
764
+ "rewards/type_reward": 0.6041666865348816,
765
+ "rewards/value_reward": 0.3750000149011612,
766
+ "step": 54
767
+ },
768
+ {
769
+ "completion_length": 53.65625190734863,
770
+ "epoch": 0.2743142144638404,
771
+ "grad_norm": 1.664948582649231,
772
+ "kl": 0.00567626953125,
773
+ "learning_rate": 1e-06,
774
+ "loss": 0.0002,
775
+ "reward": 2.2187501192092896,
776
+ "reward_std": 0.3106548562645912,
777
+ "rewards/format_reward": 1.0,
778
+ "rewards/type_reward": 0.7604166865348816,
779
+ "rewards/value_reward": 0.4583333432674408,
780
+ "step": 55
781
+ },
782
+ {
783
+ "completion_length": 52.58333396911621,
784
+ "epoch": 0.2793017456359102,
785
+ "grad_norm": 6.0326995849609375,
786
+ "kl": 0.00933837890625,
787
+ "learning_rate": 1e-06,
788
+ "loss": 0.0004,
789
+ "reward": 1.53125,
790
+ "reward_std": 0.3061639815568924,
791
+ "rewards/format_reward": 1.0,
792
+ "rewards/type_reward": 0.46875,
793
+ "rewards/value_reward": 0.0625,
794
+ "step": 56
795
+ },
796
+ {
797
+ "completion_length": 48.364585876464844,
798
+ "epoch": 0.28428927680798005,
799
+ "grad_norm": 6.530869007110596,
800
+ "kl": 0.0138702392578125,
801
+ "learning_rate": 1e-06,
802
+ "loss": 0.0006,
803
+ "reward": 1.6250000596046448,
804
+ "reward_std": 0.33414995670318604,
805
+ "rewards/format_reward": 1.0,
806
+ "rewards/type_reward": 0.5312500149011612,
807
+ "rewards/value_reward": 0.0937500037252903,
808
+ "step": 57
809
+ },
810
+ {
811
+ "completion_length": 49.51041793823242,
812
+ "epoch": 0.2892768079800499,
813
+ "grad_norm": 5.4448466300964355,
814
+ "kl": 0.0064697265625,
815
+ "learning_rate": 1e-06,
816
+ "loss": 0.0003,
817
+ "reward": 2.1562501192092896,
818
+ "reward_std": 0.4056102931499481,
819
+ "rewards/format_reward": 1.0,
820
+ "rewards/type_reward": 0.7083333730697632,
821
+ "rewards/value_reward": 0.4479166865348816,
822
+ "step": 58
823
+ },
824
+ {
825
+ "completion_length": 52.35416793823242,
826
+ "epoch": 0.2942643391521197,
827
+ "grad_norm": 6.877171039581299,
828
+ "kl": 0.0279541015625,
829
+ "learning_rate": 1e-06,
830
+ "loss": 0.0011,
831
+ "reward": 1.9583333730697632,
832
+ "reward_std": 0.5338778495788574,
833
+ "rewards/format_reward": 1.0,
834
+ "rewards/type_reward": 0.6666666865348816,
835
+ "rewards/value_reward": 0.291666679084301,
836
+ "step": 59
837
+ },
838
+ {
839
+ "completion_length": 49.78125,
840
+ "epoch": 0.29925187032418954,
841
+ "grad_norm": 1.9202797412872314,
842
+ "kl": 0.0048370361328125,
843
+ "learning_rate": 1e-06,
844
+ "loss": 0.0002,
845
+ "reward": 2.0000001192092896,
846
+ "reward_std": 0.25321267172694206,
847
+ "rewards/format_reward": 1.0,
848
+ "rewards/type_reward": 0.8229166865348816,
849
+ "rewards/value_reward": 0.1770833432674408,
850
+ "step": 60
851
+ },
852
+ {
853
+ "completion_length": 54.40625190734863,
854
+ "epoch": 0.30423940149625933,
855
+ "grad_norm": 5.348086833953857,
856
+ "kl": 0.0098114013671875,
857
+ "learning_rate": 1e-06,
858
+ "loss": 0.0004,
859
+ "reward": 1.4270833730697632,
860
+ "reward_std": 0.2687583640217781,
861
+ "rewards/format_reward": 1.0,
862
+ "rewards/type_reward": 0.4062500149011612,
863
+ "rewards/value_reward": 0.02083333395421505,
864
+ "step": 61
865
+ },
866
+ {
867
+ "completion_length": 47.12500190734863,
868
+ "epoch": 0.3092269326683292,
869
+ "grad_norm": 2.447073221206665,
870
+ "kl": 0.0063934326171875,
871
+ "learning_rate": 1e-06,
872
+ "loss": 0.0003,
873
+ "reward": 1.7291666865348816,
874
+ "reward_std": 0.26041998714208603,
875
+ "rewards/format_reward": 1.0,
876
+ "rewards/type_reward": 0.5208333432674408,
877
+ "rewards/value_reward": 0.2083333358168602,
878
+ "step": 62
879
+ },
880
+ {
881
+ "completion_length": 45.76041793823242,
882
+ "epoch": 0.314214463840399,
883
+ "grad_norm": 4.828869342803955,
884
+ "kl": 0.0174102783203125,
885
+ "learning_rate": 1e-06,
886
+ "loss": 0.0007,
887
+ "reward": 2.114583373069763,
888
+ "reward_std": 0.45097219944000244,
889
+ "rewards/format_reward": 1.0,
890
+ "rewards/type_reward": 0.7291666865348816,
891
+ "rewards/value_reward": 0.3854166716337204,
892
+ "step": 63
893
+ },
894
+ {
895
+ "completion_length": 47.98958396911621,
896
+ "epoch": 0.3192019950124688,
897
+ "grad_norm": 4.6910271644592285,
898
+ "kl": 0.04632568359375,
899
+ "learning_rate": 1e-06,
900
+ "loss": 0.0018,
901
+ "reward": 1.9479167461395264,
902
+ "reward_std": 0.3890128433704376,
903
+ "rewards/format_reward": 1.0,
904
+ "rewards/type_reward": 0.6666666865348816,
905
+ "rewards/value_reward": 0.2812500074505806,
906
+ "step": 64
907
+ },
908
+ {
909
+ "completion_length": 53.79166793823242,
910
+ "epoch": 0.32418952618453867,
911
+ "grad_norm": 3.737656354904175,
912
+ "kl": 0.0073089599609375,
913
+ "learning_rate": 1e-06,
914
+ "loss": 0.0003,
915
+ "reward": 1.6979167461395264,
916
+ "reward_std": 0.3460918813943863,
917
+ "rewards/format_reward": 1.0,
918
+ "rewards/type_reward": 0.4895833432674408,
919
+ "rewards/value_reward": 0.2083333358168602,
920
+ "step": 65
921
+ },
922
+ {
923
+ "completion_length": 52.50000190734863,
924
+ "epoch": 0.32917705735660846,
925
+ "grad_norm": 2.92228627204895,
926
+ "kl": 0.0075836181640625,
927
+ "learning_rate": 1e-06,
928
+ "loss": 0.0003,
929
+ "reward": 2.1145834922790527,
930
+ "reward_std": 0.40096497535705566,
931
+ "rewards/format_reward": 1.0,
932
+ "rewards/type_reward": 0.8125,
933
+ "rewards/value_reward": 0.3020833432674408,
934
+ "step": 66
935
+ },
936
+ {
937
+ "completion_length": 52.91666793823242,
938
+ "epoch": 0.3341645885286783,
939
+ "grad_norm": 7.9724273681640625,
940
+ "kl": 0.0267333984375,
941
+ "learning_rate": 1e-06,
942
+ "loss": 0.0011,
943
+ "reward": 2.114583373069763,
944
+ "reward_std": 0.6110064685344696,
945
+ "rewards/format_reward": 1.0,
946
+ "rewards/type_reward": 0.7812500298023224,
947
+ "rewards/value_reward": 0.3333333432674408,
948
+ "step": 67
949
+ },
950
+ {
951
+ "completion_length": 50.520835876464844,
952
+ "epoch": 0.33915211970074816,
953
+ "grad_norm": 4.161324977874756,
954
+ "kl": 0.01348876953125,
955
+ "learning_rate": 1e-06,
956
+ "loss": 0.0005,
957
+ "reward": 1.7812500596046448,
958
+ "reward_std": 0.34851498901844025,
959
+ "rewards/format_reward": 1.0,
960
+ "rewards/type_reward": 0.6562500298023224,
961
+ "rewards/value_reward": 0.125,
962
+ "step": 68
963
+ },
964
+ {
965
+ "completion_length": 44.19791793823242,
966
+ "epoch": 0.34413965087281795,
967
+ "grad_norm": 3.0720622539520264,
968
+ "kl": 0.0056304931640625,
969
+ "learning_rate": 1e-06,
970
+ "loss": 0.0002,
971
+ "reward": 1.927083432674408,
972
+ "reward_std": 0.2689402103424072,
973
+ "rewards/format_reward": 0.9895833432674408,
974
+ "rewards/type_reward": 0.7083333432674408,
975
+ "rewards/value_reward": 0.2291666679084301,
976
+ "step": 69
977
+ },
978
+ {
979
+ "completion_length": 50.63541793823242,
980
+ "epoch": 0.3491271820448878,
981
+ "grad_norm": 4.674132823944092,
982
+ "kl": 0.0147705078125,
983
+ "learning_rate": 1e-06,
984
+ "loss": 0.0006,
985
+ "reward": 2.3020834922790527,
986
+ "reward_std": 0.5566646903753281,
987
+ "rewards/format_reward": 1.0,
988
+ "rewards/type_reward": 0.8020833432674408,
989
+ "rewards/value_reward": 0.5000000298023224,
990
+ "step": 70
991
+ },
992
+ {
993
+ "completion_length": 41.88541793823242,
994
+ "epoch": 0.3541147132169576,
995
+ "grad_norm": 2.771658182144165,
996
+ "kl": 0.059356689453125,
997
+ "learning_rate": 1e-06,
998
+ "loss": 0.0024,
999
+ "reward": 1.78125,
1000
+ "reward_std": 0.20404693484306335,
1001
+ "rewards/format_reward": 1.0,
1002
+ "rewards/type_reward": 0.6458333730697632,
1003
+ "rewards/value_reward": 0.1354166716337204,
1004
+ "step": 71
1005
+ },
1006
+ {
1007
+ "completion_length": 52.1875,
1008
+ "epoch": 0.35910224438902744,
1009
+ "grad_norm": 2.4222514629364014,
1010
+ "kl": 0.005126953125,
1011
+ "learning_rate": 1e-06,
1012
+ "loss": 0.0002,
1013
+ "reward": 1.7395833730697632,
1014
+ "reward_std": 0.1746465563774109,
1015
+ "rewards/format_reward": 1.0,
1016
+ "rewards/type_reward": 0.6041666865348816,
1017
+ "rewards/value_reward": 0.1354166716337204,
1018
+ "step": 72
1019
+ },
1020
+ {
1021
+ "completion_length": 50.60416793823242,
1022
+ "epoch": 0.3640897755610973,
1023
+ "grad_norm": 3.850780487060547,
1024
+ "kl": 0.009765625,
1025
+ "learning_rate": 1e-06,
1026
+ "loss": 0.0004,
1027
+ "reward": 2.145833432674408,
1028
+ "reward_std": 0.38716475665569305,
1029
+ "rewards/format_reward": 1.0,
1030
+ "rewards/type_reward": 0.6979166865348816,
1031
+ "rewards/value_reward": 0.4479166716337204,
1032
+ "step": 73
1033
+ },
1034
+ {
1035
+ "completion_length": 52.55208396911621,
1036
+ "epoch": 0.3690773067331671,
1037
+ "grad_norm": 4.4836297035217285,
1038
+ "kl": 0.020843505859375,
1039
+ "learning_rate": 1e-06,
1040
+ "loss": 0.0008,
1041
+ "reward": 2.0312501192092896,
1042
+ "reward_std": 0.3606877475976944,
1043
+ "rewards/format_reward": 1.0,
1044
+ "rewards/type_reward": 0.7083333432674408,
1045
+ "rewards/value_reward": 0.3229166716337204,
1046
+ "step": 74
1047
+ },
1048
+ {
1049
+ "completion_length": 49.59375190734863,
1050
+ "epoch": 0.3740648379052369,
1051
+ "grad_norm": 5.496286392211914,
1052
+ "kl": 0.005767822265625,
1053
+ "learning_rate": 1e-06,
1054
+ "loss": 0.0002,
1055
+ "reward": 1.9166666865348816,
1056
+ "reward_std": 0.3684488981962204,
1057
+ "rewards/format_reward": 1.0,
1058
+ "rewards/type_reward": 0.7291666865348816,
1059
+ "rewards/value_reward": 0.1875000074505806,
1060
+ "step": 75
1061
+ },
1062
+ {
1063
+ "completion_length": 46.41666793823242,
1064
+ "epoch": 0.3790523690773067,
1065
+ "grad_norm": 9.9849271774292,
1066
+ "kl": 0.014251708984375,
1067
+ "learning_rate": 1e-06,
1068
+ "loss": 0.0006,
1069
+ "reward": 2.03125,
1070
+ "reward_std": 0.3265463262796402,
1071
+ "rewards/format_reward": 1.0,
1072
+ "rewards/type_reward": 0.6041666865348816,
1073
+ "rewards/value_reward": 0.4270833432674408,
1074
+ "step": 76
1075
+ },
1076
+ {
1077
+ "completion_length": 50.34375190734863,
1078
+ "epoch": 0.38403990024937656,
1079
+ "grad_norm": 4.3121018409729,
1080
+ "kl": 0.009674072265625,
1081
+ "learning_rate": 1e-06,
1082
+ "loss": 0.0004,
1083
+ "reward": 2.0000001192092896,
1084
+ "reward_std": 0.2965727299451828,
1085
+ "rewards/format_reward": 1.0,
1086
+ "rewards/type_reward": 0.7187500298023224,
1087
+ "rewards/value_reward": 0.2812500111758709,
1088
+ "step": 77
1089
+ },
1090
+ {
1091
+ "completion_length": 50.01041793823242,
1092
+ "epoch": 0.38902743142144636,
1093
+ "grad_norm": 1.8322099447250366,
1094
+ "kl": 0.0094757080078125,
1095
+ "learning_rate": 1e-06,
1096
+ "loss": 0.0004,
1097
+ "reward": 2.1875,
1098
+ "reward_std": 0.22901885211467743,
1099
+ "rewards/format_reward": 1.0,
1100
+ "rewards/type_reward": 0.8541666865348816,
1101
+ "rewards/value_reward": 0.3333333432674408,
1102
+ "step": 78
1103
+ },
1104
+ {
1105
+ "completion_length": 46.48958396911621,
1106
+ "epoch": 0.3940149625935162,
1107
+ "grad_norm": 4.674933910369873,
1108
+ "kl": 0.0077667236328125,
1109
+ "learning_rate": 1e-06,
1110
+ "loss": 0.0003,
1111
+ "reward": 2.2291667461395264,
1112
+ "reward_std": 0.41207581758499146,
1113
+ "rewards/format_reward": 1.0,
1114
+ "rewards/type_reward": 0.8333333432674408,
1115
+ "rewards/value_reward": 0.395833358168602,
1116
+ "step": 79
1117
+ },
1118
+ {
1119
+ "completion_length": 48.14583396911621,
1120
+ "epoch": 0.39900249376558605,
1121
+ "grad_norm": 7.052217483520508,
1122
+ "kl": 0.016845703125,
1123
+ "learning_rate": 1e-06,
1124
+ "loss": 0.0007,
1125
+ "reward": 2.1666667461395264,
1126
+ "reward_std": 0.3924287408590317,
1127
+ "rewards/format_reward": 1.0,
1128
+ "rewards/type_reward": 0.7812500298023224,
1129
+ "rewards/value_reward": 0.3854166865348816,
1130
+ "step": 80
1131
+ },
1132
+ {
1133
+ "completion_length": 54.76041793823242,
1134
+ "epoch": 0.40399002493765584,
1135
+ "grad_norm": 6.566869735717773,
1136
+ "kl": 0.022216796875,
1137
+ "learning_rate": 1e-06,
1138
+ "loss": 0.0009,
1139
+ "reward": 2.4687501192092896,
1140
+ "reward_std": 0.48340874910354614,
1141
+ "rewards/format_reward": 1.0,
1142
+ "rewards/type_reward": 0.8854166865348816,
1143
+ "rewards/value_reward": 0.5833333730697632,
1144
+ "step": 81
1145
+ },
1146
+ {
1147
+ "completion_length": 46.19791793823242,
1148
+ "epoch": 0.4089775561097257,
1149
+ "grad_norm": 2.225270986557007,
1150
+ "kl": 0.01568603515625,
1151
+ "learning_rate": 1e-06,
1152
+ "loss": 0.0006,
1153
+ "reward": 1.7812500596046448,
1154
+ "reward_std": 0.31752340495586395,
1155
+ "rewards/format_reward": 1.0,
1156
+ "rewards/type_reward": 0.4791666865348816,
1157
+ "rewards/value_reward": 0.3020833432674408,
1158
+ "step": 82
1159
+ },
1160
+ {
1161
+ "completion_length": 45.9375,
1162
+ "epoch": 0.4139650872817955,
1163
+ "grad_norm": 2.7589635848999023,
1164
+ "kl": 0.02484130859375,
1165
+ "learning_rate": 1e-06,
1166
+ "loss": 0.001,
1167
+ "reward": 2.0625001192092896,
1168
+ "reward_std": 0.15642696991562843,
1169
+ "rewards/format_reward": 1.0,
1170
+ "rewards/type_reward": 0.8333333432674408,
1171
+ "rewards/value_reward": 0.229166679084301,
1172
+ "step": 83
1173
+ },
1174
+ {
1175
+ "completion_length": 47.48958396911621,
1176
+ "epoch": 0.41895261845386533,
1177
+ "grad_norm": 7.477308750152588,
1178
+ "kl": 0.014617919921875,
1179
+ "learning_rate": 1e-06,
1180
+ "loss": 0.0006,
1181
+ "reward": 2.0833334922790527,
1182
+ "reward_std": 0.2517358362674713,
1183
+ "rewards/format_reward": 1.0,
1184
+ "rewards/type_reward": 0.7604166865348816,
1185
+ "rewards/value_reward": 0.3229166716337204,
1186
+ "step": 84
1187
+ },
1188
+ {
1189
+ "completion_length": 46.125,
1190
+ "epoch": 0.4239401496259352,
1191
+ "grad_norm": 5.973231792449951,
1192
+ "kl": 0.00994873046875,
1193
+ "learning_rate": 1e-06,
1194
+ "loss": 0.0004,
1195
+ "reward": 2.1354167461395264,
1196
+ "reward_std": 0.23450180888175964,
1197
+ "rewards/format_reward": 1.0,
1198
+ "rewards/type_reward": 0.7604166865348816,
1199
+ "rewards/value_reward": 0.3750000223517418,
1200
+ "step": 85
1201
+ },
1202
+ {
1203
+ "completion_length": 50.36458396911621,
1204
+ "epoch": 0.428927680798005,
1205
+ "grad_norm": 2.558129072189331,
1206
+ "kl": 0.00982666015625,
1207
+ "learning_rate": 1e-06,
1208
+ "loss": 0.0004,
1209
+ "reward": 2.270833373069763,
1210
+ "reward_std": 0.2335097175091505,
1211
+ "rewards/format_reward": 1.0,
1212
+ "rewards/type_reward": 0.8125000298023224,
1213
+ "rewards/value_reward": 0.4583333358168602,
1214
+ "step": 86
1215
+ },
1216
+ {
1217
+ "completion_length": 52.71875190734863,
1218
+ "epoch": 0.4339152119700748,
1219
+ "grad_norm": 5.039067268371582,
1220
+ "kl": 0.01031494140625,
1221
+ "learning_rate": 1e-06,
1222
+ "loss": 0.0004,
1223
+ "reward": 1.958333432674408,
1224
+ "reward_std": 0.30705152451992035,
1225
+ "rewards/format_reward": 1.0,
1226
+ "rewards/type_reward": 0.6770833432674408,
1227
+ "rewards/value_reward": 0.2812500149011612,
1228
+ "step": 87
1229
+ },
1230
+ {
1231
+ "completion_length": 46.66666793823242,
1232
+ "epoch": 0.4389027431421446,
1233
+ "grad_norm": 3.2081820964813232,
1234
+ "kl": 0.0118255615234375,
1235
+ "learning_rate": 1e-06,
1236
+ "loss": 0.0005,
1237
+ "reward": 2.1979167461395264,
1238
+ "reward_std": 0.29271166026592255,
1239
+ "rewards/format_reward": 1.0,
1240
+ "rewards/type_reward": 0.8020833730697632,
1241
+ "rewards/value_reward": 0.3958333432674408,
1242
+ "step": 88
1243
+ },
1244
+ {
1245
+ "completion_length": 43.85416793823242,
1246
+ "epoch": 0.44389027431421446,
1247
+ "grad_norm": 3.229139566421509,
1248
+ "kl": 0.017974853515625,
1249
+ "learning_rate": 1e-06,
1250
+ "loss": 0.0007,
1251
+ "reward": 1.9687501192092896,
1252
+ "reward_std": 0.34249694645404816,
1253
+ "rewards/format_reward": 1.0,
1254
+ "rewards/type_reward": 0.8125,
1255
+ "rewards/value_reward": 0.15625000558793545,
1256
+ "step": 89
1257
+ },
1258
+ {
1259
+ "completion_length": 41.66666793823242,
1260
+ "epoch": 0.4488778054862843,
1261
+ "grad_norm": 12.049365997314453,
1262
+ "kl": 0.012603759765625,
1263
+ "learning_rate": 1e-06,
1264
+ "loss": 0.0005,
1265
+ "reward": 2.0937500596046448,
1266
+ "reward_std": 0.29995445907115936,
1267
+ "rewards/format_reward": 1.0,
1268
+ "rewards/type_reward": 0.7708333432674408,
1269
+ "rewards/value_reward": 0.3229166716337204,
1270
+ "step": 90
1271
+ },
1272
+ {
1273
+ "completion_length": 44.58333396911621,
1274
+ "epoch": 0.4538653366583541,
1275
+ "grad_norm": 7.588222980499268,
1276
+ "kl": 0.038848876953125,
1277
+ "learning_rate": 1e-06,
1278
+ "loss": 0.0015,
1279
+ "reward": 1.8750001192092896,
1280
+ "reward_std": 0.2700177952647209,
1281
+ "rewards/format_reward": 1.0,
1282
+ "rewards/type_reward": 0.6562500298023224,
1283
+ "rewards/value_reward": 0.21875,
1284
+ "step": 91
1285
+ },
1286
+ {
1287
+ "completion_length": 50.17708396911621,
1288
+ "epoch": 0.45885286783042395,
1289
+ "grad_norm": 1.2638224363327026,
1290
+ "kl": 0.0105743408203125,
1291
+ "learning_rate": 1e-06,
1292
+ "loss": 0.0004,
1293
+ "reward": 1.895833432674408,
1294
+ "reward_std": 0.15039033815264702,
1295
+ "rewards/format_reward": 0.9895833432674408,
1296
+ "rewards/type_reward": 0.75,
1297
+ "rewards/value_reward": 0.15625000558793545,
1298
+ "step": 92
1299
+ },
1300
+ {
1301
+ "completion_length": 51.60416793823242,
1302
+ "epoch": 0.46384039900249374,
1303
+ "grad_norm": 4.8879313468933105,
1304
+ "kl": 0.012725830078125,
1305
+ "learning_rate": 1e-06,
1306
+ "loss": 0.0005,
1307
+ "reward": 1.8958333730697632,
1308
+ "reward_std": 0.3485773950815201,
1309
+ "rewards/format_reward": 1.0,
1310
+ "rewards/type_reward": 0.6562500298023224,
1311
+ "rewards/value_reward": 0.2395833358168602,
1312
+ "step": 93
1313
+ },
1314
+ {
1315
+ "completion_length": 44.50000190734863,
1316
+ "epoch": 0.4688279301745636,
1317
+ "grad_norm": 1.3869191408157349,
1318
+ "kl": 0.0136566162109375,
1319
+ "learning_rate": 1e-06,
1320
+ "loss": 0.0005,
1321
+ "reward": 2.21875,
1322
+ "reward_std": 0.23043328523635864,
1323
+ "rewards/format_reward": 1.0,
1324
+ "rewards/type_reward": 0.8958333730697632,
1325
+ "rewards/value_reward": 0.322916679084301,
1326
+ "step": 94
1327
+ },
1328
+ {
1329
+ "completion_length": 46.63541793823242,
1330
+ "epoch": 0.47381546134663344,
1331
+ "grad_norm": 2.261981725692749,
1332
+ "kl": 0.01190185546875,
1333
+ "learning_rate": 1e-06,
1334
+ "loss": 0.0005,
1335
+ "reward": 2.2500001192092896,
1336
+ "reward_std": 0.19500280916690826,
1337
+ "rewards/format_reward": 1.0,
1338
+ "rewards/type_reward": 0.8333333730697632,
1339
+ "rewards/value_reward": 0.4166666716337204,
1340
+ "step": 95
1341
+ },
1342
+ {
1343
+ "completion_length": 42.39583396911621,
1344
+ "epoch": 0.47880299251870323,
1345
+ "grad_norm": 6.752196311950684,
1346
+ "kl": 0.01824951171875,
1347
+ "learning_rate": 1e-06,
1348
+ "loss": 0.0007,
1349
+ "reward": 1.7291667461395264,
1350
+ "reward_std": 0.17677670530974865,
1351
+ "rewards/format_reward": 1.0,
1352
+ "rewards/type_reward": 0.5833333432674408,
1353
+ "rewards/value_reward": 0.1458333432674408,
1354
+ "step": 96
1355
+ },
1356
+ {
1357
+ "completion_length": 44.520835876464844,
1358
+ "epoch": 0.4837905236907731,
1359
+ "grad_norm": 3.292236566543579,
1360
+ "kl": 0.011383056640625,
1361
+ "learning_rate": 1e-06,
1362
+ "loss": 0.0005,
1363
+ "reward": 2.1979167461395264,
1364
+ "reward_std": 0.30453013628721237,
1365
+ "rewards/format_reward": 1.0,
1366
+ "rewards/type_reward": 0.8437500298023224,
1367
+ "rewards/value_reward": 0.3541666716337204,
1368
+ "step": 97
1369
+ },
1370
+ {
1371
+ "completion_length": 44.177085876464844,
1372
+ "epoch": 0.48877805486284287,
1373
+ "grad_norm": 1.9719746112823486,
1374
+ "kl": 0.017486572265625,
1375
+ "learning_rate": 1e-06,
1376
+ "loss": 0.0007,
1377
+ "reward": 2.0729166865348816,
1378
+ "reward_std": 0.2895440012216568,
1379
+ "rewards/format_reward": 1.0,
1380
+ "rewards/type_reward": 0.6979166865348816,
1381
+ "rewards/value_reward": 0.3750000149011612,
1382
+ "step": 98
1383
+ },
1384
+ {
1385
+ "completion_length": 44.875,
1386
+ "epoch": 0.4937655860349127,
1387
+ "grad_norm": 2.0317137241363525,
1388
+ "kl": 0.015380859375,
1389
+ "learning_rate": 1e-06,
1390
+ "loss": 0.0006,
1391
+ "reward": 2.1458334922790527,
1392
+ "reward_std": 0.24789174646139145,
1393
+ "rewards/format_reward": 1.0,
1394
+ "rewards/type_reward": 0.7812500298023224,
1395
+ "rewards/value_reward": 0.3645833432674408,
1396
+ "step": 99
1397
+ },
1398
+ {
1399
+ "completion_length": 45.78125190734863,
1400
+ "epoch": 0.49875311720698257,
1401
+ "grad_norm": 2.7145822048187256,
1402
+ "kl": 0.02294921875,
1403
+ "learning_rate": 1e-06,
1404
+ "loss": 0.0009,
1405
+ "reward": 2.239583373069763,
1406
+ "reward_std": 0.2199057899415493,
1407
+ "rewards/format_reward": 1.0,
1408
+ "rewards/type_reward": 0.8958333730697632,
1409
+ "rewards/value_reward": 0.3437500074505806,
1410
+ "step": 100
1411
+ }
1412
+ ],
1413
+ "logging_steps": 1.0,
1414
+ "max_steps": 200,
1415
+ "num_input_tokens_seen": 0,
1416
+ "num_train_epochs": 1,
1417
+ "save_steps": 50,
1418
+ "stateful_callbacks": {
1419
+ "TrainerControl": {
1420
+ "args": {
1421
+ "should_epoch_stop": false,
1422
+ "should_evaluate": false,
1423
+ "should_log": false,
1424
+ "should_save": true,
1425
+ "should_training_stop": false
1426
+ },
1427
+ "attributes": {}
1428
+ }
1429
+ },
1430
+ "total_flos": 0.0,
1431
+ "train_batch_size": 1,
1432
+ "trial_name": null,
1433
+ "trial_params": null
1434
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:861c7d6a773e34f3550a3cb19cb0a1514cf32333baff3276f7ae903b3c53d3db
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff