kshitijthakkar commited on
Commit
d6d4945
ยท
verified ยท
1 Parent(s): fa7ce44

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -172
README.md CHANGED
@@ -1,199 +1,164 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
 
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - qwen3
5
+ - qwen3moe
6
+ - mixture-of-experts
7
+ - llm
8
+ - text-generation
9
+ - instruction-following
10
+ - agentic-ai
11
+ - tool-use
12
+ - low-resource
13
+ - edge-ai
14
+ - from-scratch
15
+ - causal-lm
16
+ license: apache-2.0
17
+ datasets:
18
+ - kshitijthakkar/loggenix-mc-oraca-agentinstruct-1m-v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ ---
21
+ # ๐Ÿง  LoggenixMoE133M: A Lightweight Mixture-of-Experts Language Model (8E2A)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ [![Model Size](https://img.shields.io/badge/Parameters-133M-blue)]()
24
+ [![Experts](https://img.shields.io/badge/Experts-8-lightgrey)]()
25
+ [![Routing](https://img.shields.io/badge/Active_Experts-2-orange)]()
26
+ [![Model Size](https://img.shields.io/badge/ActiveParameters-80M-red)]()
27
+ [![License: Apache 2.0](https://img.shields.io/badge/License-Apache_2.0-green.svg)](https://www.apache.org/licenses/LICENSE-2.0)
28
 
29
+ ---
30
 
31
+ ## ๐Ÿ“ Model Card
32
 
33
+ **LoggenixMoE133M** is a small Mixture-of-Experts (MoE) Causal Language Model trained **from scratch** on a custom dataset containing root cause analysis (RCA), code generation, and reasoning tasks.
34
 
35
+ - **Architecture**: A lightweight transformer with Mixture-of-Experts routing, **inspired by the innovative architectural design of Qwen3 models.**
36
+ - **Parameter Count**: 133M total, with 2 experts active per token (approx. 80M active per step).
37
+ - **Experts**: 8 total, gated per token with router logits.
38
+ - **Activation Strategy**: Top-2 routing with auxiliary routing loss.
39
+ - **Tokenizer Features**: Crucially, the tokenizer includes dedicated special tokens for agentic capabilities: `<tool_call>` and `<think>`. These tokens are designed to facilitate advanced reasoning, planning, and interaction with external tools, enabling the model to serve as a foundational component for building robust AI agents.
40
 
41
+ ---
42
 
43
+ ## ๐Ÿ“Š Training Details
44
+
45
+ | Attribute | Value |
46
+ |------------------------|------------------------------------------------|
47
+ | Total Params | 133M |
48
+ | MoE Config | 8 experts, top-2 gating |
49
+ | Dataset Type | RCA, code, and logic prompts (15+ task splits) |
50
+ | Training Epochs | 5 |
51
+ | Effective Tokens Seen | 1.5 Billion |
52
+ | Train Loss (final) | 3.263 |
53
+ | Val Loss (final) | 3.327 |
54
+ | Mean Token Accuracy | ~48% |
55
+ | Optimizer | AdamW |
56
+ | Scheduler | Linear Warmup + Cosine Decay |
57
+ | Precision | FP16 with GradScaler |
58
+ | Checkpoint Format | HF-compatible |
59
+ | Training Cost | $94 across Modal (A100 40GB) + Hyperbolic (RTX 4090) |
60
+ | Context Length | 1024 |
61
+ ---
62
 
63
+ ## ๐Ÿงช Intended Use
64
 
65
+ ### โœ… Suitable for:
66
+ - Instruction-following tasks
67
+ - Root cause analysis (RCA) and structured summarization
68
+ - Lightweight code generation (Python)
69
+ - Chain-of-thought style reasoning prompts
70
+ - **Fine-tuning for specific tasks on edge devices** (e.g., smart home voice assistants, mobile offline chatbots, industrial IoT anomaly detection)
71
+ - **Building specialized AI agents** that can reason, plan, and interact with external tools (e.g., automated customer support, workflow automation, personalized learning agents)
72
 
73
+ ### ๐Ÿšซ Not suitable for:
74
+ - Long-context tasks (>4K tokens)
75
+ - High-stakes factual QA
76
+ - Safety-critical decision-making without oversight
77
 
78
+ ---
79
 
80
+ ## ๐Ÿงจ Example Usage
81
+
82
+ ```python
83
+ from transformers import AutoModelForCausalLM, AutoTokenizer
84
+
85
+ tokenizer = AutoTokenizer.from_pretrained("kshitijthakkar/loggenix-moe-0.12B-A0.08B-e5-lr5e4-b4-3060")
86
+
87
+ messages = [
88
+ {
89
+ "content": "",
90
+ "role": "system"
91
+ },
92
+ {
93
+ "content": "Write a Python function to compute factorial.",
94
+ "role": "user"
95
+ }
96
+ ]
97
+ # Tokenizer
98
+
99
+ tokenizer.pad_token = tokenizer.eos_token
100
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
101
+ model = AutoModelForCausalLM.from_pretrained("kshitijthakkar/loggenix-moe-0.12B-A0.08B-e5-lr5e4-b4-3060", device_map="auto")
102
+ memory = model.get_memory_footprint() / 1e6
103
+ print(f"Memory footprint: {memory:,.1f} MB")
104
+ model
105
+ outputs = model.generate(inputs, do_sample=True,use_cache=False,max_new_tokens=512)
106
+ print(tokenizer.decode(outputs[0]))
107
+
108
+
109
+ ## Alternatively
110
+ with torch.no_grad():
111
+ outputs = model.generate(
112
+ inputs,
113
+ max_new_tokens=50, # Reduced for testing
114
+ do_sample=True,
115
+ temperature=0.5,
116
+ top_p=0.95,
117
+ return_dict_in_generate=True,
118
+ use_cache=False # Disable caching to avoid potential issues
119
+ )
120
+ generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
121
+ print(generated_text)
122
+ ```
123
+ ---
124
+ ๐Ÿ”ง Expert Routing
125
+ ---
126
 
127
+ This model uses a top-2 gating mechanism where, for each token, two of the eight experts are selected based on learned router logits.
128
 
129
+ During training, a light auxiliary loss was applied to encourage balanced expert usage and improve routing stability.
130
 
131
+ Note: Routing logits are optionally available in the model outputs via output_router_logits=True.
132
 
133
+ ---
134
+ ๐Ÿ“ƒ License
135
+ ---
136
 
137
+ This model is released under the Apache 2.0 License.
138
 
139
+ ---
140
+ ๐Ÿ™Œ Acknowledgements
141
+ ---
142
+ Trained using:
143
+ ---
144
 
145
+ ๐Ÿงจ Hugging Face Transformers
146
 
147
+ ๐Ÿง  Custom training loop with gradient checkpointing
148
 
149
+ ๐Ÿงฎ NVIDIA RTX 4090 (24GB VRAM) / A100 (40GB)
150
 
151
+ ๐Ÿ“ฆ Logged and tracked via Weights & Biases
152
 
153
+ ---
154
 
155
+ ### ๐Ÿ—ฃ๏ธ Citation
156
+ ---
157
+ @misc{loggenix-moe-0.12B-A0.08B-e5-lr5e4-b4-3060,
158
+ title = {loggenix-moe-0.12B-A0.08B-e5-lr5e4-b4-3060: A Lightweight Mixture-of-Experts Model},
159
+ author = {kshitijthakkar},
160
+ year = {2025},
161
+ url = {https://huggingface.co/kshitijthakkar/loggenix-moe-0.12B-A0.08B-e5-lr5e4-b4-3060 },
162
+ note = {Trained from scratch on RCA + code + reasoning dataset.}
163
+ }
164
+ ---