kssrikar4 commited on
Commit
b3a3c88
·
verified ·
1 Parent(s): 3266f62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -0
README.md CHANGED
@@ -113,6 +113,33 @@ _This plot shows the separability of the positive and negative classes in a redu
113
  ![Placeholder for CLS Embeddings Visualization](umap.png)
114
  _This plot shows the separability of the positive and negative classes in a reduced-dimension space using UMAP._
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  ## Licensing
117
 
118
  This model is licensed under the **GNU Lesser General Public License v2.1 (LGPL-2.1)**.
 
113
  ![Placeholder for CLS Embeddings Visualization](umap.png)
114
  _This plot shows the separability of the positive and negative classes in a reduced-dimension space using UMAP._
115
 
116
+ ## Web Interface for Easy Access
117
+
118
+ For a user-friendly way to interact with the model, you can use the Streamlit web application. This interface allows you to predict on a single protein sequence or upload a multi-sequence FASTA file for batch processing. The application is also designed to automatically handle hardware constraints, switching to CPU if a CUDA device is not available or if it runs out of memory.
119
+
120
+ To run the web interface, follow these steps:
121
+
122
+ 1. **Clone the repository:** Open your terminal and clone the `AVP-ESM` repository from GitHub.
123
+ ```bash
124
+ git clone [https://github.com/kssrikar4/AVP-ESM.git](https://github.com/kssrikar4/AVP-ESM.git)
125
+ cd AVP-ESM
126
+ ```
127
+
128
+ 2. **Install dependencies:** The application requires several Python libraries. You can install them by creating a `requirements.txt` file
129
+
130
+ ```bash
131
+ python -m venv py
132
+ source py/bin/activate # On Windows: `py\Scripts\activate`
133
+ pip install -r requirements.txt
134
+ ```
135
+
136
+ 3. **Run the application:** Once the dependencies are installed, you can launch the web interface with the following command:
137
+ ```bash
138
+ streamlit run app.py
139
+ ```
140
+
141
+ Your default web browser should open automatically, displaying the Protein Virulence Predictor application.
142
+
143
  ## Licensing
144
 
145
  This model is licensed under the **GNU Lesser General Public License v2.1 (LGPL-2.1)**.