Commit
·
114102e
1
Parent(s):
9f6b9b2
update README
Browse files
README.md
CHANGED
@@ -7,11 +7,11 @@ datasets:
|
|
7 |
- wikipedia
|
8 |
---
|
9 |
|
10 |
-
# Model Card for Japanese BART
|
11 |
|
12 |
## Model description
|
13 |
|
14 |
-
This is a Japanese BART
|
15 |
|
16 |
## How to use
|
17 |
|
@@ -19,8 +19,8 @@ You can use this model as follows:
|
|
19 |
|
20 |
```python
|
21 |
from transformers import XLMRobertaTokenizer, MBartForConditionalGeneration
|
22 |
-
tokenizer = XLMRobertaTokenizer.from_pretrained('ku-nlp/bart-
|
23 |
-
model = MBartForConditionalGeneration.from_pretrained('ku-nlp/bart-
|
24 |
sentence = '京都 大学 で 自然 言語 処理 を 専攻 する 。' # input should be segmented into words by Juman++ in advance
|
25 |
encoding = tokenizer(sentence, return_tensors='pt')
|
26 |
...
|
|
|
7 |
- wikipedia
|
8 |
---
|
9 |
|
10 |
+
# Model Card for Japanese BART base
|
11 |
|
12 |
## Model description
|
13 |
|
14 |
+
This is a Japanese BART base model pre-trained on Japanese Wikipedia.
|
15 |
|
16 |
## How to use
|
17 |
|
|
|
19 |
|
20 |
```python
|
21 |
from transformers import XLMRobertaTokenizer, MBartForConditionalGeneration
|
22 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained('ku-nlp/bart-base-japanese')
|
23 |
+
model = MBartForConditionalGeneration.from_pretrained('ku-nlp/bart-base-japanese')
|
24 |
sentence = '京都 大学 で 自然 言語 処理 を 専攻 する 。' # input should be segmented into words by Juman++ in advance
|
25 |
encoding = tokenizer(sentence, return_tensors='pt')
|
26 |
...
|