marriola commited on
Commit
d61cb2d
·
verified ·
1 Parent(s): a61c637

Upload BD3LM

Browse files
Files changed (3) hide show
  1. config.json +5 -5
  2. configuration_bd3lm.py +43 -0
  3. modeling_bd3lm.py +560 -0
config.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
- "_name_or_path": "kuleshov-group/bamdlm-owt-block_size8",
3
  "architectures": [
4
- "BAMDLM"
5
  ],
6
  "attn_backend": "sdpa",
7
  "auto_map": {
8
- "AutoConfig": "configuration_bamdlm.BAMDLMConfig",
9
- "AutoModelForMaskedLM": "modeling_bamdlm.BAMDLM"
10
  },
11
  "block_size": 8,
12
  "cond_dim": 128,
@@ -14,7 +14,7 @@
14
  "dropout": 0.1,
15
  "hidden_dim": 768,
16
  "model_length": 1024,
17
- "model_type": "bamdlm",
18
  "n_blocks": 12,
19
  "n_heads": 12,
20
  "return_dict": false,
 
1
  {
2
+ "_name_or_path": "kuleshov-group/bd3lm-owt-block_size8",
3
  "architectures": [
4
+ "BD3LM"
5
  ],
6
  "attn_backend": "sdpa",
7
  "auto_map": {
8
+ "AutoConfig": "configuration_bd3lm.BD3LMConfig",
9
+ "AutoModelForMaskedLM": "modeling_bd3lm.BD3LM"
10
  },
11
  "block_size": 8,
12
  "cond_dim": 128,
 
14
  "dropout": 0.1,
15
  "hidden_dim": 768,
16
  "model_length": 1024,
17
+ "model_type": "bd3lm",
18
  "n_blocks": 12,
19
  "n_heads": 12,
20
  "return_dict": false,
configuration_bd3lm.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BD3LM config for Hugging Face.
2
+
3
+ """
4
+
5
+ import transformers
6
+
7
+
8
+ class BD3LMConfig(transformers.PretrainedConfig):
9
+ """Hugging Face configuration class for BD3LM."""
10
+ model_type = "bd3lm"
11
+
12
+ def __init__(
13
+ self,
14
+ block_size: int = 1,
15
+ vocab_size: int = 50258,
16
+ model_length: int = 1024,
17
+ cross_attn: bool = True,
18
+ attn_backend: str = 'sdpa',
19
+ hidden_dim: int = 768,
20
+ cond_dim: int = 129,
21
+ n_blocks: int = 12,
22
+ n_heads: int = 12,
23
+ dropout: float = 0.1,
24
+ time_conditioning: bool = False,
25
+ var_min: bool = True,
26
+ sampling_eps_min: float = 1e-3,
27
+ sampling_eps_max: float = 0.999,
28
+ ** kwargs):
29
+ super().__init__(**kwargs)
30
+ self.block_size = block_size
31
+ self.cross_attn = cross_attn
32
+ self.attn_backend = attn_backend
33
+ self.vocab_size = vocab_size
34
+ self.model_length = model_length
35
+ self.hidden_dim = hidden_dim
36
+ self.cond_dim = cond_dim
37
+ self.n_blocks = n_blocks
38
+ self.n_heads = n_heads
39
+ self.dropout = dropout
40
+ self.time_conditioning = time_conditioning
41
+ self.var_min = var_min
42
+ self.sampling_eps_min = sampling_eps_min
43
+ self.sampling_eps_max = sampling_eps_max
modeling_bd3lm.py ADDED
@@ -0,0 +1,560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BD3LM model for Hugging Face.
2
+
3
+ """
4
+ import math
5
+ import typing
6
+
7
+ import einops
8
+ import flash_attn
9
+ import flash_attn.layers.rotary
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import transformers
14
+ from transformers import modeling_outputs
15
+
16
+ from .configuration_bd3lm import BD3LMConfig
17
+
18
+ # Flags required to enable jit fusion kernels
19
+ torch._C._jit_set_profiling_mode(False)
20
+ torch._C._jit_set_profiling_executor(False)
21
+ torch._C._jit_override_can_fuse_on_cpu(True)
22
+ torch._C._jit_override_can_fuse_on_gpu(True)
23
+
24
+ def block_causal_mask(num_rows, block_size, mode='full', offset=0):
25
+ mask = block_size * torch.arange(
26
+ 1, num_rows // block_size + 1).unsqueeze(1).tile(block_size).flatten().unsqueeze(1)
27
+ if mode == 'full':
28
+ mask = (mask >= mask.T + offset)
29
+ elif mode == 'diag':
30
+ mask = (mask + offset == mask.T)
31
+ elif mode == 'triu_diag':
32
+ mask = torch.zeros(num_rows, num_rows)
33
+ rows = torch.arange(0, num_rows)
34
+ group_indices = rows // (block_size)
35
+ column_indices = group_indices * (block_size) + block_size + offset
36
+ valid_rows = column_indices < num_rows
37
+ mask[rows[valid_rows].unsqueeze(1), column_indices[valid_rows].unsqueeze(1)] = 1
38
+ return mask.int()
39
+
40
+ def bias_dropout_add_scale(
41
+ x: torch.Tensor,
42
+ bias: typing.Optional[torch.Tensor],
43
+ scale: torch.Tensor,
44
+ residual: typing.Optional[torch.Tensor],
45
+ prob: float,
46
+ training: bool) -> torch.Tensor:
47
+ if bias is not None:
48
+ out = scale * F.dropout(x + bias, p=prob, training=training)
49
+ else:
50
+ out = scale * F.dropout(x, p=prob, training=training)
51
+
52
+ if residual is not None:
53
+ out = residual + out
54
+ return out
55
+
56
+
57
+ def get_bias_dropout_add_scale(training):
58
+ def _bias_dropout_add(x, bias, scale, residual, prob):
59
+ return bias_dropout_add_scale(
60
+ x, bias, scale, residual, prob, training)
61
+
62
+ return _bias_dropout_add
63
+
64
+
65
+ # function overload
66
+ def modulate(x: torch.Tensor,
67
+ shift: torch.Tensor,
68
+ scale: torch.Tensor) -> torch.Tensor:
69
+ return x * (1 + scale) + shift
70
+
71
+
72
+ @torch.jit.script
73
+ def bias_dropout_add_scale_fused_train(
74
+ x: torch.Tensor,
75
+ bias: typing.Optional[torch.Tensor],
76
+ scale: torch.Tensor,
77
+ residual: typing.Optional[torch.Tensor],
78
+ prob: float) -> torch.Tensor:
79
+ return bias_dropout_add_scale(
80
+ x, bias, scale, residual, prob, True)
81
+
82
+
83
+ @torch.jit.script
84
+ def bias_dropout_add_scale_fused_inference(
85
+ x: torch.Tensor,
86
+ bias: typing.Optional[torch.Tensor],
87
+ scale: torch.Tensor,
88
+ residual: typing.Optional[torch.Tensor],
89
+ prob: float) -> torch.Tensor:
90
+ return bias_dropout_add_scale(
91
+ x, bias, scale, residual, prob, False)
92
+
93
+
94
+ @torch.jit.script
95
+ def modulate_fused(x: torch.Tensor,
96
+ shift: torch.Tensor,
97
+ scale: torch.Tensor) -> torch.Tensor:
98
+ return modulate(x, shift, scale)
99
+
100
+
101
+ class Rotary(torch.nn.Module):
102
+ def __init__(self, dim, base=10_000):
103
+ super().__init__()
104
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
105
+ self.register_buffer('inv_freq', inv_freq)
106
+ self.seq_len_cached = None
107
+ self.cos_cached = None
108
+ self.sin_cached = None
109
+
110
+ def forward(self, x, seq_dim=1):
111
+ seq_len = x.shape[seq_dim]
112
+ if seq_len != self.seq_len_cached:
113
+ self.seq_len_cached = seq_len
114
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
115
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
116
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
+ # dims are: batch, seq_len, qkv, head, dim
118
+ self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
119
+ self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
120
+ # This makes the transformation on v an identity.
121
+ self.cos_cached[:,:,2,:,:].fill_(1.)
122
+ self.sin_cached[:,:,2,:,:].fill_(0.)
123
+
124
+ return self.cos_cached, self.sin_cached
125
+
126
+
127
+ def rotate_half(x):
128
+ x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
133
+ return (qkv * cos) + (rotate_half(qkv) * sin)
134
+
135
+ def apply_rotary_pos_emb(qkv, cos, sin):
136
+ cos = cos[0,:,0,0,:cos.shape[-1]//2]
137
+ sin = sin[0,:,0,0,:sin.shape[-1]//2]
138
+ return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
139
+
140
+
141
+ # function overload
142
+ def modulate(x, shift, scale):
143
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
144
+
145
+
146
+ #################################################################################
147
+ # Layers #
148
+ #################################################################################
149
+ class LayerNorm(nn.Module):
150
+ def __init__(self, dim):
151
+ super().__init__()
152
+ self.weight = nn.Parameter(torch.ones([dim]))
153
+ self.dim = dim
154
+ def forward(self, x):
155
+ with torch.cuda.amp.autocast(enabled=False):
156
+ x = F.layer_norm(x.float(), [self.dim])
157
+ return x * self.weight[None,None,:]
158
+
159
+
160
+ def residual_linear(x, W, x_skip, residual_scale):
161
+ """x_skip + residual_scale * W @ x"""
162
+ dim_out, dim_in = W.shape[0], W.shape[1]
163
+ return torch.addmm(
164
+ x_skip.view(-1, dim_out),
165
+ x.view(-1, dim_in),
166
+ W.T,
167
+ alpha=residual_scale).view(*x.shape[:-1], dim_out)
168
+
169
+
170
+ #################################################################################
171
+ # Embedding Layers for Timesteps and Class Labels #
172
+ #################################################################################
173
+ class TimestepEmbedder(nn.Module):
174
+ """
175
+ Embeds scalar timesteps into vector representations.
176
+ """
177
+ def __init__(self, hidden_size, frequency_embedding_size=256):
178
+ super().__init__()
179
+ self.mlp = nn.Sequential(
180
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
181
+ nn.SiLU(),
182
+ nn.Linear(hidden_size, hidden_size, bias=True))
183
+ self.frequency_embedding_size = frequency_embedding_size
184
+
185
+ @staticmethod
186
+ def timestep_embedding(t, dim, max_period=10000):
187
+ """
188
+ Create sinusoidal timestep embeddings.
189
+ :param t: a 1-D Tensor of N indices, one per batch element.
190
+ These may be fractional.
191
+ :param dim: the dimension of the output.
192
+ :param max_period: controls the minimum frequency of the embeddings.
193
+ :return: an (N, D) Tensor of positional embeddings.
194
+ """
195
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
196
+ half = dim // 2
197
+ freqs = torch.exp(
198
+ - math.log(max_period)
199
+ * torch.arange(start=0, end=half, dtype=torch.float32)
200
+ / half).to(device=t.device)
201
+ args = t[:, None].float() * freqs[None]
202
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
203
+ if dim % 2:
204
+ embedding = torch.cat(
205
+ [embedding,
206
+ torch.zeros_like(embedding[:, :1])], dim=-1)
207
+ return embedding
208
+
209
+ def forward(self, t):
210
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
211
+ t_emb = self.mlp(t_freq)
212
+ return t_emb
213
+
214
+
215
+ class LabelEmbedder(nn.Module):
216
+ """Embeds class labels into vector representations.
217
+
218
+ Also handles label dropout for classifier-free guidance.
219
+ """
220
+ def __init__(self, num_classes, cond_size):
221
+ super().__init__()
222
+ self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
223
+ self.num_classes = num_classes
224
+
225
+ # TODO think of initializing with 0.02 std deviation like in original DiT paper
226
+
227
+ def forward(self, labels):
228
+ embeddings = self.embedding_table(labels)
229
+ return embeddings
230
+
231
+
232
+ #################################################################################
233
+ # Core Model #
234
+ #################################################################################
235
+
236
+ def regular_attention_multi_headed(qkv):
237
+ # Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
238
+ # where the 3 represents Q, K, V packed in that order
239
+ batch_size, seq_len, _, num_heads, head_dim = qkv.shape
240
+ # Separate Q, K, V from the packed qkv tensor
241
+ # [batch_size, seq_len, num_heads, head_dim]
242
+ q = qkv[:, :, 0, :, :]
243
+ k = qkv[:, :, 1, :, :]
244
+ v = qkv[:, :, 2, :, :]
245
+
246
+ # Transpose and reshape Q and K for batched matrix multiplication:
247
+ # [batch_size, num_heads, seq_len, head_dim]
248
+ q = q.transpose(1, 2)
249
+ k = k.transpose(1, 2)
250
+ v = v.transpose(1, 2)
251
+
252
+ # Compute scaled dot-product attention
253
+ # [batch_size, num_heads, seq_len, seq_len]
254
+ attention_scores = torch.matmul(
255
+ q, k.transpose(-2, -1)) / math.sqrt(head_dim)
256
+
257
+ # Apply softmax to calculate the attention weights
258
+ attention_probs = F.softmax(attention_scores, dim=-1)
259
+
260
+ # [batch_size, num_heads, seq_len, head_dim]
261
+ attention_output = torch.matmul(attention_probs, v)
262
+
263
+ # [batch_size, seq_len, num_heads, head_dim]
264
+ attention_output = attention_output.transpose(1, 2)
265
+ return einops.rearrange(attention_output,
266
+ 'b s h d -> b s (h d)')
267
+
268
+
269
+ class DDiTBlock(nn.Module):
270
+ def __init__(self, n, dim, n_heads, cond_dim, mlp_ratio=4,
271
+ dropout=0.1, attn_backend='flash_attn'):
272
+ super().__init__()
273
+ self.n = n
274
+ self.n_heads = n_heads
275
+ self.attn_backend = attn_backend
276
+ self.kv_cache = None
277
+
278
+ self.norm1 = LayerNorm(dim)
279
+ self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
280
+ self.attn_out = nn.Linear(dim, dim, bias=False)
281
+ self.dropout1 = nn.Dropout(dropout)
282
+
283
+ self.norm2 = LayerNorm(dim)
284
+ self.mlp = nn.Sequential(
285
+ nn.Linear(dim, mlp_ratio * dim, bias=True),
286
+ nn.GELU(approximate='tanh'),
287
+ nn.Linear(mlp_ratio * dim, dim, bias=True))
288
+ self.dropout2 = nn.Dropout(dropout)
289
+ self.dropout = dropout
290
+
291
+ self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
292
+ self.adaLN_modulation.weight.data.zero_()
293
+ self.adaLN_modulation.bias.data.zero_()
294
+
295
+ def _get_bias_dropout_scale(self):
296
+ if self.training:
297
+ return bias_dropout_add_scale_fused_train
298
+ else:
299
+ return bias_dropout_add_scale_fused_inference
300
+
301
+
302
+ def get_qkv(self, x, rotary_cos_sin, save_kv=False):
303
+ # compute qkv (potentially use cache)
304
+ if self.kv_cache is not None:
305
+ block_len = x.shape[1] - self.kv_cache.shape[1]
306
+ new_qkv = self.attn_qkv(x[:, -block_len:])
307
+ qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
308
+ else:
309
+ qkv = self.attn_qkv(x)
310
+
311
+ # save kv cache in a sliding window (can't exceed context len)
312
+ if save_kv:
313
+ if self.kv_cache is not None:
314
+ cache_len = min(x.shape[1], self.n - block_len)
315
+ self.kv_cache = qkv[:, -cache_len:]
316
+ else:
317
+ self.kv_cache = qkv
318
+ qkv = einops.rearrange(
319
+ qkv,
320
+ 'b s (three h d) -> b s three h d',
321
+ three=3,
322
+ h=self.n_heads)
323
+ with torch.cuda.amp.autocast(enabled=False):
324
+ cos, sin = rotary_cos_sin
325
+ if self.attn_backend == 'flash_attn':
326
+ qkv = apply_rotary_pos_emb(
327
+ qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
328
+ else:
329
+ qkv = apply_rotary_pos_emb_torchscript(
330
+ qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
331
+ return qkv
332
+
333
+ def cross_attn(self, x, qkv, cross_attn_mask=None):
334
+ scale = qkv.shape[-1]
335
+ qkv = qkv.transpose(1, 3)
336
+ attn_dropout = self.attn_dropout if self.training else 0.0
337
+ cross_attn_mask = cross_attn_mask.bool() if cross_attn_mask is not None else None
338
+ x = F.scaled_dot_product_attention(
339
+ query=qkv[:, :, 0],
340
+ key=qkv[:, :, 1],
341
+ value=qkv[:, :, 2],
342
+ attn_mask=cross_attn_mask,
343
+ dropout_p=attn_dropout,
344
+ is_causal=False,
345
+ scale=1 / math.sqrt(scale))
346
+ x = x.transpose(1, 2)
347
+ x = einops.rearrange(x, 'b s h d -> b s (h d)')
348
+ return x
349
+
350
+ def forward(self, x, rotary_cos_sin, c, cross_attn_mask=None, save_kv=False):
351
+ bias_dropout_scale_fn = self._get_bias_dropout_scale()
352
+
353
+ (shift_msa, scale_msa, gate_msa, shift_mlp,
354
+ scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
355
+
356
+ # attention operation
357
+ x_skip = x
358
+ x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
359
+
360
+ # get qkvs
361
+ if cross_attn_mask is not None and not save_kv:
362
+ qkv_x = self.get_qkv(x[:,:self.n], rotary_cos_sin)
363
+ qkv_x0 = self.get_qkv(x[:,self.n:], rotary_cos_sin)
364
+ qkv = torch.cat((qkv_x, qkv_x0), dim=1)
365
+ else:
366
+ qkv = self.get_qkv(x, rotary_cos_sin, save_kv=save_kv)
367
+
368
+ if cross_attn_mask is None and self.attn_backend == 'flash_attn':
369
+ x = regular_attention_multi_headed(qkv)
370
+ else:
371
+ x = self.cross_attn(x, qkv, cross_attn_mask=cross_attn_mask)
372
+
373
+ x = bias_dropout_scale_fn(self.attn_out(x),
374
+ None,
375
+ gate_msa,
376
+ x_skip,
377
+ self.dropout)
378
+
379
+ # mlp operation
380
+ x = bias_dropout_scale_fn(
381
+ self.mlp(modulate_fused(
382
+ self.norm2(x), shift_mlp, scale_mlp)),
383
+ None, gate_mlp, x, self.dropout)
384
+ return x
385
+
386
+
387
+ class EmbeddingLayer(nn.Module):
388
+ def __init__(self, dim, vocab_dim):
389
+ super().__init__()
390
+ self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
391
+ torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
392
+
393
+ def forward(self, x):
394
+ return self.embedding[x]
395
+
396
+
397
+ class DDitFinalLayer(nn.Module):
398
+ def __init__(self, hidden_size, out_channels, cond_dim):
399
+ super().__init__()
400
+ self.norm_final = LayerNorm(hidden_size)
401
+ self.linear = nn.Linear(hidden_size, out_channels)
402
+ self.linear.weight.data.zero_()
403
+ self.linear.bias.data.zero_()
404
+
405
+ self.adaLN_modulation = nn.Linear(cond_dim,
406
+ 2 * hidden_size,
407
+ bias=True)
408
+ self.adaLN_modulation.weight.data.zero_()
409
+ self.adaLN_modulation.bias.data.zero_()
410
+
411
+
412
+ def forward(self, x, c):
413
+ shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
414
+ x = modulate_fused(self.norm_final(x), shift, scale)
415
+ x = self.linear(x)
416
+ return x
417
+
418
+
419
+ class DITBackbone(nn.Module):
420
+ def __init__(
421
+ self,
422
+ config: BD3LMConfig):
423
+ super().__init__()
424
+
425
+ self.config = config
426
+ self.cross_attn = config.cross_attn
427
+ self.block_size = config.block_size
428
+ self.vocab_size = config.vocab_size
429
+ self.n = config.model_length
430
+
431
+ self.vocab_embed = EmbeddingLayer(
432
+ config.hidden_dim,
433
+ config.vocab_size)
434
+ self.sigma_map = TimestepEmbedder(
435
+ config.cond_dim)
436
+ self.rotary_emb = Rotary(
437
+ config.hidden_dim // config.n_heads)
438
+
439
+ blocks = []
440
+ for _ in range(config.n_blocks):
441
+ blocks.append(DDiTBlock(self.n,
442
+ config.hidden_dim,
443
+ config.n_heads,
444
+ config.cond_dim,
445
+ dropout=config.dropout,
446
+ attn_backend=config.attn_backend,))
447
+ self.blocks = nn.ModuleList(blocks)
448
+
449
+ self.output_layer = DDitFinalLayer(
450
+ config.hidden_dim,
451
+ config.vocab_size,
452
+ config.cond_dim)
453
+ if self.cross_attn:
454
+ self.gen_mask(config.model_length, self.block_size)
455
+ self.precision = torch.float32
456
+
457
+ def _get_bias_dropout_scale(self):
458
+ if self.training:
459
+ return bias_dropout_add_scale_fused_train
460
+ else:
461
+ return bias_dropout_add_scale_fused_inference
462
+
463
+ def gen_mask(self, seqlen, block_size):
464
+ self_attn_mask = block_causal_mask(seqlen, block_size, mode='diag')
465
+ x0_attn_mask = block_causal_mask(seqlen, block_size, mode='full')
466
+ cross_attn_mask = x0_attn_mask.clone()
467
+ cross_attn_mask.masked_fill_(self_attn_mask == 1, 0)
468
+
469
+ cross_attn_mask = torch.cat((self_attn_mask, cross_attn_mask), dim=1)
470
+ x0_attn_mask = torch.cat((torch.zeros_like(self_attn_mask), x0_attn_mask), dim=1)
471
+ self.cross_attn_mask = torch.cat((cross_attn_mask, x0_attn_mask), dim=0)
472
+
473
+ def forward(self, indices, sigma, disable_cross_attn=False,
474
+ output_hidden_states=False, save_kv=False):
475
+ cross_attn = self.cross_attn and not disable_cross_attn
476
+ if not self.config.time_conditioning:
477
+ sigma = torch.zeros_like(sigma)
478
+ all_hidden_states = []
479
+ x = self.vocab_embed(indices)
480
+ if output_hidden_states:
481
+ all_hidden_states.append(x)
482
+ c = F.silu(self.sigma_map(sigma))
483
+ if cross_attn:
484
+ cross_attn_mask = self.cross_attn_mask.to(x.device)
485
+ if save_kv:
486
+ cross_attn_mask = cross_attn_mask[:x.shape[1], :x.shape[1]]
487
+ rotary_cos_sin = self.rotary_emb(x[:, :self.n])
488
+ else:
489
+ cross_attn_mask = None
490
+ rotary_cos_sin = self.rotary_emb(x)
491
+
492
+ with torch.cuda.amp.autocast(dtype=self.precision):
493
+ for i in range(len(self.blocks)):
494
+ x = self.blocks[i](x,
495
+ rotary_cos_sin,
496
+ c,
497
+ cross_attn_mask=cross_attn_mask,
498
+ save_kv=save_kv)
499
+ if output_hidden_states:
500
+ all_hidden_states.append(x)
501
+ logits = self.output_layer(x, c)
502
+ if cross_attn and not save_kv:
503
+ logits = logits[:, :self.n]
504
+ all_hidden_states = [hidden_states[:, :self.n] for hidden_states in all_hidden_states]
505
+ return logits, all_hidden_states
506
+
507
+ class BD3LM(transformers.PreTrainedModel):
508
+ """HF-compatible model."""
509
+ config_class = BD3LMConfig
510
+ base_model_prefix = "bd3lm"
511
+
512
+ def __init__(
513
+ self,
514
+ config: BD3LMConfig):
515
+ super().__init__(config)
516
+ self.backbone = DITBackbone(config)
517
+ if config.var_min:
518
+ self.register_buffer(
519
+ 'sampling_eps_min',
520
+ torch.tensor(config.sampling_eps_min))
521
+ self.register_buffer(
522
+ 'sampling_eps_max',
523
+ torch.tensor(config.sampling_eps_max))
524
+
525
+ def forward(
526
+ self,
527
+ input_ids: torch.LongTensor = None,
528
+ timesteps: torch.FloatTensor = None,
529
+ disable_cross_attn: typing.Optional[bool] = None,
530
+ output_hidden_states: typing.Optional[bool] = None,
531
+ return_dict: typing.Optional[bool] = None,
532
+ ) -> typing.Union[
533
+ torch.Tensor, typing.Tuple,
534
+ modeling_outputs.MaskedLMOutput]:
535
+ """HF-compatible forward method."""
536
+ output_hidden_states = (
537
+ output_hidden_states
538
+ if output_hidden_states is not None
539
+ else self.config.output_hidden_states
540
+ )
541
+ return_dict = return_dict \
542
+ if return_dict is not None \
543
+ else self.config.use_return_dict
544
+
545
+ logits, all_hidden_states = self.backbone(
546
+ indices=input_ids,
547
+ sigma=timesteps,
548
+ disable_cross_attn=disable_cross_attn,
549
+ output_hidden_states=output_hidden_states
550
+ )
551
+ if return_dict:
552
+ return modeling_outputs.MaskedLMOutput(
553
+ logits=logits,
554
+ hidden_states=all_hidden_states if output_hidden_states else None,
555
+ loss=None
556
+ )
557
+ elif output_hidden_states:
558
+ return logits, all_hidden_states
559
+ else:
560
+ return logits