MaxLSB commited on
Commit
891ac32
·
verified ·
1 Parent(s): 9f45bd6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -189
README.md CHANGED
@@ -1,199 +1,96 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ license_name: lfm1.0
5
+ license_link: LICENSE
6
+ datasets:
7
+ - kurakurai/luth-sft
8
+ language:
9
+ - fr
10
+ - en
11
+ base_model:
12
+ - LiquidAI/LFM2-1.2B
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - liquid
16
+ - lfm2
17
+ - luth
18
  ---
19
 
20
+ ![Luth x LFM2](media/logo_collab.png)
21
 
 
22
 
23
+ # Luth-LFM2-1.2B
24
 
25
+ **Luth-LFM2-1.2B** is a French fine-tuned version of [LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2BM), trained on the [Luth-SFT](https://huggingface.co/datasets/kurakurai/luth-sft) dataset. The model has improved its French capabilities in instruction following, math, and general knowledge. Additionally, its English capabilities have remained stable or slightly improved such as in Maths.
26
 
27
+ Our Evaluation, training and data scripts are available on [GitHub](https://github.com/kurakurai/Luth), along with the [Blog](https://huggingface.co/blog/MaxLSB/luth) we wrote, to further detail our recipe.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ The model was trained using full fine-tuning on the Luth-SFT dataset with [Axolotl](https://github.com/axolotl-ai-cloud/axolotl). The resulting model was then merged back with LFM2-1.2B. This process successfully retained the model's English capabilities while improving its performance in French.
32
+
33
+ ## Benchmark Results
34
+
35
+ We used LightEval for evaluation, with custom tasks for the French benchmarks. The models were evaluated with a `temperature=0`.
36
+
37
+ ### French Benchmark Scores
38
+
39
+ | Benchmark | LFM2-1.2B | Luth-LFM2-1.2B |
40
+ |-------------------|------------------|-----------------------|
41
+ | ifeval-fr | 53.23 | <u>61.74</u> |
42
+ | gpqa-fr | 25.77 | <u>26.61</u> |
43
+ | mmlu-fr | 47.59 | <u>48.02</u> |
44
+ | math-500-fr | 35.80 | <u>47.00</u> |
45
+ | kholle | 44.57 | <u>48.57</u> |
46
+ | arc-chall-fr | <u>39.44</u> | 39.01 |
47
+ | hellaswag-fr | 33.05 | <u>36.81</u> |
48
+
49
+ ### English Benchmark Scores
50
+
51
+ | Benchmark | LFM2-1.2B | Luth-LFM2-1.2B |
52
+ |-------------------|------------------|-----------------------|
53
+ | ifeval-en | <u>69.87</u> | 69.69 |
54
+ | gpqa-en | 26.68 | <u>28.03</u> |
55
+ | mmlu-en | <u>55.17</u> | 54.52 |
56
+ | math-500-en | 44.60 | <u>50.20</u> |
57
+ | arc-chall-en | 42.66 | <u>43.26</u> |
58
+ | hellaswag-en | 57.64 | <u>58.42</u> |
59
+
60
+ ## Code Example
61
+
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained("kurakurai/Luth-LFM2-1.2B")
66
+ model = AutoModelForCausalLM.from_pretrained("kurakurai/Luth-LFM2-1.2B")
67
+ messages = [
68
+ {"role": "user", "content": "Quelle est la capitale de la France?"},
69
+ ]
70
+ inputs = tokenizer.apply_chat_template(
71
+ messages,
72
+ add_generation_prompt=True,
73
+ tokenize=True,
74
+ return_dict=True,
75
+ return_tensors="pt",
76
+ ).to(model.device)
77
+
78
+ outputs = model.generate(**inputs, max_new_tokens=100)
79
+ print(
80
+ tokenizer.decode(
81
+ outputs[0][inputs["input_ids"].shape[-1] :], skip_special_tokens=True
82
+ )
83
+ )
84
+ ```
85
+
86
+ ## Citation
87
+
88
+ ```bibtex
89
+ @misc{luthlfm2kurakurai,
90
+ title = {Luth-LFM2-1.2B},
91
+ author = {Kurakura AI Team},
92
+ year = {2025},
93
+ howpublished = {\url{https://huggingface.co/kurakurai/Luth-LFM2-1.2B}},
94
+ note = {LFM2-1.2B fine-tuned on French datasets}
95
+ }
96
+ ```