--- library_name: transformers license: other license_name: lfm1.0 license_link: LICENSE datasets: - kurakurai/luth-sft language: - fr - en base_model: - LiquidAI/LFM2-700M pipeline_tag: text-generation tags: - liquid - lfm2 - luth --- ![Luth x LFM2](media/logo_collab.png) # Luth-LFM2-700M **Luth-LFM2-700M** is a French fine-tuned version of [LFM2-700M](https://huggingface.co/LiquidAI/LFM2-700M) in collaboration with Liquid AI, trained on the [Luth-SFT](https://huggingface.co/datasets/kurakurai/luth-sft) dataset. The model has improved its French capabilities in instruction following, math, and general knowledge. Additionally, its English capabilities have remained stable. Our Evaluation, training and data scripts are available on [GitHub](https://github.com/kurakurai/Luth), along with the [Blog](https://huggingface.co/blog/MaxLSB/luth) we wrote, to further detail our recipe. ![Luth-LFM2 graph](media/lfm2-luth.png) ## Model Details The model was trained using full fine-tuning on the Luth-SFT dataset with [Axolotl](https://github.com/axolotl-ai-cloud/axolotl). The resulting model was then merged back with LFM2-700M. This process successfully retained the model's English capabilities while improving its performance in French. ## Benchmark Results We used LightEval for evaluation, with custom tasks for the French benchmarks. The models were evaluated with a `temperature=0`. ### French Benchmark Scores | Model | IFEval
French | GPQA-Diamond
French | MMLU
French | Math500
French | Arc-Challenge
French | Hellaswag
French | | --------------------- | ------------- | ------------------- | ----------- | -------------- | -------------------- | ---------------- | | **Luth-LFM2-700M** | 50.22 | 27.92 | 44.72| 38.40 | 36.70 | 48.25 | | LFM2-700M | 41.96 | 20.81 | 43.70 | 32.40 | 36.27 | 41.51 | | Llama-3.2-1B | 27.79 | 25.38 | 25.49 | 15.80 | 29.34 | 25.09 | | Qwen3-0.6B | 44.86 | 26.90 | 27.13 | 29.20 | 31.57 | 25.10 | | Qwen2.5-0.5B-Instruct | 22.00 | 25.89 | 35.04 | 12.00 | 28.23 | 51.45 | ### English Benchmark Scores | Model | IFEval
English | GPQA-Diamond
English | MMLU
English | Math500
English | Arc-Challenge
English | Hellaswag
English | | --------------------- | -------------- | -------------------- | ------------ | --------------- | --------------------- | ----------------- | | **Luth-LFM2-700M** | 63.40 | 29.29 | 50.39 | 38.40 | 38.91 | 54.05 | | LFM2-700M | 65.06 | 30.81 | 50.65 | 32.00 | 38.65 | 52.54 | | Llama-3.2-1B | 44.05 | 25.25 | 31.02 | 26.40 | 34.30 | 55.84 | | Qwen3-0.6B | 57.18 | 29.29 | 36.79 | 43.40 | 33.70 | 42.92 | | Qwen2.5-0.5B-Instruct | 29.70 | 29.29 | 43.80 | 32.00 | 32.17 | 49.56 | ## Code Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("kurakurai/Luth-LFM2-700M") model = AutoModelForCausalLM.from_pretrained("kurakurai/Luth-LFM2-700M") messages = [ {"role": "user", "content": "Quelle est la capitale de la France?"}, ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print( tokenizer.decode( outputs[0][inputs["input_ids"].shape[-1] :], skip_special_tokens=True ) ) ``` ## Citation ```bibtex @misc{luth2025kurakurai, title = {Luth: Efficient French Specialization for Small Language Models and Cross-Lingual Transfer}, author = {Lasbordes, Maxence and Gad, Sinoué}, year = {2025}, howpublished = {\url{https://arxiv.org/abs/2510.05846}}, note = {arXiv:2510.05846} } ```