kurohige commited on
Commit
36b6f26
·
1 Parent(s): 97a72aa

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.97 +/- 0.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c16b5c5d2e0ef607f2dd5ab0c498f5a3db4af55a26063346a63dd7db1cf9589
3
+ size 108012
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f4d86c8b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f5f4d862d50>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 2000000,
45
+ "_total_timesteps": 2000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674224175209120562,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHo/Hvjw0Xj8IWMW+ne+lP6Olg76KWjY/CeKMvqllxT8EBIg/eGptP+Jmy7+xbdm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]]",
60
+ "desired_goal": "[[-0.38976377 0.86798453 -0.38543725]\n [ 1.2963749 -0.25712308 0.712319 ]\n [-0.275162 1.5421649 1.0626225 ]\n [ 0.92740583 -1.5890772 -1.69866 ]]",
61
+ "observation": "[[ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+CVWPWOuqz3Qt38+yH7zvXs0ET6T/YA+DYXcPeMs7b03qSY9nKoBPhi8vz1mbtE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0522823 0.08382871 0.24972463]\n [-0.11889416 0.14180176 0.25193462]\n [ 0.10767565 -0.11580827 0.04068872]\n [ 0.12662739 0.09362048 0.10226135]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKhvWVBYVE8CUhpRSlIwBbJRLMowBdJRHQLYLH/5+H8F1fZQoaAZoCWgPQwjOxd/2BKkIwJSGlFKUaBVLMmgWR0C2CwF7x/d7dX2UKGgGaAloD0MI6fF7m/4MC8CUhpRSlGgVSzJoFkdAtgrfFVDKHXV9lChoBmgJaA9DCEs5X+y9qBTAlIaUUpRoFUsyaBZHQLYKvo0hvBJ1fZQoaAZoCWgPQwjbatYZ3/cUwJSGlFKUaBVLMmgWR0C2C5K/ATIvdX2UKGgGaAloD0MIUb8LW7NFEMCUhpRSlGgVSzJoFkdAtgt0HryDqXV9lChoBmgJaA9DCMkfDDz3LhTAlIaUUpRoFUsyaBZHQLYLUa6BiCt1fZQoaAZoCWgPQwimJyzxgOISwJSGlFKUaBVLMmgWR0C2CzEnG828dX2UKGgGaAloD0MIxOxl22mrHsCUhpRSlGgVSzJoFkdAtgwPUTcqOXV9lChoBmgJaA9DCEcAN4sXSxjAlIaUUpRoFUsyaBZHQLYL8MXaakR1fZQoaAZoCWgPQwjjUpW2uCYUwJSGlFKUaBVLMmgWR0C2C85drwfAdX2UKGgGaAloD0MIuamB5nPuF8CUhpRSlGgVSzJoFkdAtgut6ol2NnV9lChoBmgJaA9DCCWTUzvD5BnAlIaUUpRoFUsyaBZHQLYMhTC+De11fZQoaAZoCWgPQwjvA5DaxAkTwJSGlFKUaBVLMmgWR0C2DGaVMVUNdX2UKGgGaAloD0MI4gD6ff+mF8CUhpRSlGgVSzJoFkdAtgxEGiYb83V9lChoBmgJaA9DCNLgtrbwrBLAlIaUUpRoFUsyaBZHQLYMI5eJHiF1fZQoaAZoCWgPQwj99nXgnGESwJSGlFKUaBVLMmgWR0C2DQKeK8+SdX2UKGgGaAloD0MIysNCrWk+FMCUhpRSlGgVSzJoFkdAtgzkAbQ1JnV9lChoBmgJaA9DCJih8UQQ5xHAlIaUUpRoFUsyaBZHQLYMwYoAn2J1fZQoaAZoCWgPQwi1p+Sc2AMOwJSGlFKUaBVLMmgWR0C2DKEHY6GQdX2UKGgGaAloD0MI7+Nojqy8CsCUhpRSlGgVSzJoFkdAtg19zhgmZ3V9lChoBmgJaA9DCEvMs5JWnAnAlIaUUpRoFUsyaBZHQLYNXytmthd1fZQoaAZoCWgPQwiU3czoR9MawJSGlFKUaBVLMmgWR0C2DTzeoDPodX2UKGgGaAloD0MInnx6bMvgDsCUhpRSlGgVSzJoFkdAtg0cXj2i+XV9lChoBmgJaA9DCDcz+tFwGhLAlIaUUpRoFUsyaBZHQLYOAJhfBvd1fZQoaAZoCWgPQwhoBBvXv7sUwJSGlFKUaBVLMmgWR0C2DeH27FsIdX2UKGgGaAloD0MIgZauYBtxD8CUhpRSlGgVSzJoFkdAtg2/g/C66XV9lChoBmgJaA9DCIRGsHH9Gw7AlIaUUpRoFUsyaBZHQLYNnwIMSbp1fZQoaAZoCWgPQwjQCgxZ3QoWwJSGlFKUaBVLMmgWR0C2DnjKHO8kdX2UKGgGaAloD0MIYDqt26D2DcCUhpRSlGgVSzJoFkdAtg5aIEbHZXV9lChoBmgJaA9DCDHSi9r9KgnAlIaUUpRoFUsyaBZHQLYON5mh/RV1fZQoaAZoCWgPQwioqWVrfYERwJSGlFKUaBVLMmgWR0C2DhcaS9uhdX2UKGgGaAloD0MIeeblsPuuE8CUhpRSlGgVSzJoFkdAtg71u1ndwnV9lChoBmgJaA9DCMXiN4WVShPAlIaUUpRoFUsyaBZHQLYO1yjYZl51fZQoaAZoCWgPQwgWvr7WpaYOwJSGlFKUaBVLMmgWR0C2DrTIzWPMdX2UKGgGaAloD0MIkLsIU5RbFMCUhpRSlGgVSzJoFkdAtg6USrYGuHV9lChoBmgJaA9DCIPdsG1RxhTAlIaUUpRoFUsyaBZHQLYPbd3B55Z1fZQoaAZoCWgPQwhfmbfqOkQQwJSGlFKUaBVLMmgWR0C2D09DMNc4dX2UKGgGaAloD0MIdbD+z2HOFcCUhpRSlGgVSzJoFkdAtg8s0GeMAHV9lChoBmgJaA9DCL+2fvrPmhrAlIaUUpRoFUsyaBZHQLYPDGPgeil1fZQoaAZoCWgPQwi3ek563/gNwJSGlFKUaBVLMmgWR0C2D+7nkkrxdX2UKGgGaAloD0MIh78ma9RzFsCUhpRSlGgVSzJoFkdAtg/QRNATqXV9lChoBmgJaA9DCNQLPs3JexPAlIaUUpRoFUsyaBZHQLYPrdI5HVh1fZQoaAZoCWgPQwgPQkC+hEoOwJSGlFKUaBVLMmgWR0C2D41aGHpKdX2UKGgGaAloD0MIRbk0fuF1DMCUhpRSlGgVSzJoFkdAthBsPMB6r3V9lChoBmgJaA9DCCzy64fYkBDAlIaUUpRoFUsyaBZHQLYQTZ7ojfN1fZQoaAZoCWgPQwgSoKaWrVUJwJSGlFKUaBVLMmgWR0C2ECs3hn8LdX2UKGgGaAloD0MIYVW9/E5zEcCUhpRSlGgVSzJoFkdAthAKtjkMkXV9lChoBmgJaA9DCHUF24gnWwvAlIaUUpRoFUsyaBZHQLYQ7xcmjTN1fZQoaAZoCWgPQwhaYmU08tkOwJSGlFKUaBVLMmgWR0C2ENCK77KrdX2UKGgGaAloD0MI0m9fB84JE8CUhpRSlGgVSzJoFkdAthCuGlANX3V9lChoBmgJaA9DCGraxTTTPRHAlIaUUpRoFUsyaBZHQLYQjc6Nly11fZQoaAZoCWgPQwgTgeofRCIRwJSGlFKUaBVLMmgWR0C2EWRNEgGKdX2UKGgGaAloD0MImPp5U5F6FcCUhpRSlGgVSzJoFkdAthFFtgrpaHV9lChoBmgJaA9DCMreUs4Xmw/AlIaUUpRoFUsyaBZHQLYRI0Fr2xp1fZQoaAZoCWgPQwgBMQkX8igbwJSGlFKUaBVLMmgWR0C2EQK7yxzJdX2UKGgGaAloD0MINrBVgsVhGcCUhpRSlGgVSzJoFkdAthHtOymhunV9lChoBmgJaA9DCIY97fDX9BHAlIaUUpRoFUsyaBZHQLYRzqKP4mF1fZQoaAZoCWgPQwg8aeGyCisZwJSGlFKUaBVLMmgWR0C2EaxR64UfdX2UKGgGaAloD0MIbQGh9fC1GMCUhpRSlGgVSzJoFkdAthGLyDqW1XV9lChoBmgJaA9DCG1y+KQTiQzAlIaUUpRoFUsyaBZHQLYScFN+LFZ1fZQoaAZoCWgPQwjqkQa3tcUQwJSGlFKUaBVLMmgWR0C2ElHQpnYhdX2UKGgGaAloD0MI4NVyZyZYEcCUhpRSlGgVSzJoFkdAthIvgMtsenV9lChoBmgJaA9DCPxuumWHiBXAlIaUUpRoFUsyaBZHQLYSDvnr6cl1fZQoaAZoCWgPQwgcJ4V5j1MTwJSGlFKUaBVLMmgWR0C2EvJKvmozdX2UKGgGaAloD0MI9Bd6xOg5GMCUhpRSlGgVSzJoFkdAthLTwCr923V9lChoBmgJaA9DCAjm6PF7KxPAlIaUUpRoFUsyaBZHQLYSsVMEidJ1fZQoaAZoCWgPQwiBW3fzVBcTwJSGlFKUaBVLMmgWR0C2EpD8P4EfdX2UKGgGaAloD0MIk+S5vg+nFMCUhpRSlGgVSzJoFkdAthNuKjzqbHV9lChoBmgJaA9DCHBgcqPIihrAlIaUUpRoFUsyaBZHQLYTT4x1xKh1fZQoaAZoCWgPQwiwAKYMHIARwJSGlFKUaBVLMmgWR0C2Ey0SqU/wdX2UKGgGaAloD0MIA9L+B1jLB8CUhpRSlGgVSzJoFkdAthMMh+vyLHV9lChoBmgJaA9DCLd/ZaVJSRLAlIaUUpRoFUsyaBZHQLYT6s/IKdB1fZQoaAZoCWgPQwhfYcH9gCcWwJSGlFKUaBVLMmgWR0C2E8xCY1HfdX2UKGgGaAloD0MIWDz1SIMbEMCUhpRSlGgVSzJoFkdAthOqB8QZoHV9lChoBmgJaA9DCJ30vvG1Zw7AlIaUUpRoFUsyaBZHQLYTidaMaS91fZQoaAZoCWgPQwh1O/vKgxQJwJSGlFKUaBVLMmgWR0C2FGUbcXWOdX2UKGgGaAloD0MIWKg1zTuuFMCUhpRSlGgVSzJoFkdAthRGebutwXV9lChoBmgJaA9DCKYmwRvSiBjAlIaUUpRoFUsyaBZHQLYUJAe7tiR1fZQoaAZoCWgPQwirdk1Ia1wZwJSGlFKUaBVLMmgWR0C2FAORkmQbdX2UKGgGaAloD0MIfc7drpdmFcCUhpRSlGgVSzJoFkdAthTgxEfDDXV9lChoBmgJaA9DCACpTZzc7w7AlIaUUpRoFUsyaBZHQLYUwprk8zR1fZQoaAZoCWgPQwi2os1xbhMOwJSGlFKUaBVLMmgWR0C2FKCcXm/4dX2UKGgGaAloD0MIfuTWpNviEMCUhpRSlGgVSzJoFkdAthSAnx8UmHV9lChoBmgJaA9DCAYSFD/G7BHAlIaUUpRoFUsyaBZHQLYVWkRzzVd1fZQoaAZoCWgPQwjnHafoSA4KwJSGlFKUaBVLMmgWR0C2FTuZTho/dX2UKGgGaAloD0MIofgx5q61G8CUhpRSlGgVSzJoFkdAthUZGOMl1XV9lChoBmgJaA9DCOzCD86nThDAlIaUUpRoFUsyaBZHQLYU+I68xsV1fZQoaAZoCWgPQwjRI0bPLVQZwJSGlFKUaBVLMmgWR0C2FdyhvitJdX2UKGgGaAloD0MIVMN+T6xTDsCUhpRSlGgVSzJoFkdAthW+C9RJmXV9lChoBmgJaA9DCF2HakqyzhfAlIaUUpRoFUsyaBZHQLYVm5paibl1fZQoaAZoCWgPQwhBKVq5F7gbwJSGlFKUaBVLMmgWR0C2FXsrNGExdX2UKGgGaAloD0MIqmBUUidgEcCUhpRSlGgVSzJoFkdAthZnmfXf7HV9lChoBmgJaA9DCANC6+HLBBDAlIaUUpRoFUsyaBZHQLYWSQ+EAYJ1fZQoaAZoCWgPQwj9+EuL+vQQwJSGlFKUaBVLMmgWR0C2FiajWTX8dX2UKGgGaAloD0MIBcHj27smC8CUhpRSlGgVSzJoFkdAthYGYplSTHV9lChoBmgJaA9DCEOSWb3DfRjAlIaUUpRoFUsyaBZHQLYW5MnJDE51fZQoaAZoCWgPQwi1w1+TNYoRwJSGlFKUaBVLMmgWR0C2FsYmkWRBdX2UKGgGaAloD0MIMhzPZ0CdFsCUhpRSlGgVSzJoFkdAthajrnkkr3V9lChoBmgJaA9DCOEM/n4x+w3AlIaUUpRoFUsyaBZHQLYWgx3V0911ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 100000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:038a28df851753276d6229dc547dfec5076f47781790b6cd7ef523207a8e78ce
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af18100da6c4a647ac35fed5eb6ecbe15eae31ca9e7e5ef65e3fbe645b033720
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f4d86c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f4d862d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674224175209120562, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+LWj2Pg9gIz3ogus+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHo/Hvjw0Xj8IWMW+ne+lP6Olg76KWjY/CeKMvqllxT8EBIg/eGptP+Jmy7+xbdm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjwtaPY+D2AjPeiC6z4+65E8yvEAu/+JBjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]\n [0.48126355 0.03988653 0.4599831 ]]", "desired_goal": "[[-0.38976377 0.86798453 -0.38543725]\n [ 1.2963749 -0.25712308 0.712319 ]\n [-0.275162 1.5421649 1.0626225 ]\n [ 0.92740583 -1.5890772 -1.69866 ]]", "observation": "[[ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]\n [ 0.48126355 0.03988653 0.4599831 0.01781237 -0.00196754 0.00821161]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+CVWPWOuqz3Qt38+yH7zvXs0ET6T/YA+DYXcPeMs7b03qSY9nKoBPhi8vz1mbtE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0522823 0.08382871 0.24972463]\n [-0.11889416 0.14180176 0.25193462]\n [ 0.10767565 -0.11580827 0.04068872]\n [ 0.12662739 0.09362048 0.10226135]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKhvWVBYVE8CUhpRSlIwBbJRLMowBdJRHQLYLH/5+H8F1fZQoaAZoCWgPQwjOxd/2BKkIwJSGlFKUaBVLMmgWR0C2CwF7x/d7dX2UKGgGaAloD0MI6fF7m/4MC8CUhpRSlGgVSzJoFkdAtgrfFVDKHXV9lChoBmgJaA9DCEs5X+y9qBTAlIaUUpRoFUsyaBZHQLYKvo0hvBJ1fZQoaAZoCWgPQwjbatYZ3/cUwJSGlFKUaBVLMmgWR0C2C5K/ATIvdX2UKGgGaAloD0MIUb8LW7NFEMCUhpRSlGgVSzJoFkdAtgt0HryDqXV9lChoBmgJaA9DCMkfDDz3LhTAlIaUUpRoFUsyaBZHQLYLUa6BiCt1fZQoaAZoCWgPQwimJyzxgOISwJSGlFKUaBVLMmgWR0C2CzEnG828dX2UKGgGaAloD0MIxOxl22mrHsCUhpRSlGgVSzJoFkdAtgwPUTcqOXV9lChoBmgJaA9DCEcAN4sXSxjAlIaUUpRoFUsyaBZHQLYL8MXaakR1fZQoaAZoCWgPQwjjUpW2uCYUwJSGlFKUaBVLMmgWR0C2C85drwfAdX2UKGgGaAloD0MIuamB5nPuF8CUhpRSlGgVSzJoFkdAtgut6ol2NnV9lChoBmgJaA9DCCWTUzvD5BnAlIaUUpRoFUsyaBZHQLYMhTC+De11fZQoaAZoCWgPQwjvA5DaxAkTwJSGlFKUaBVLMmgWR0C2DGaVMVUNdX2UKGgGaAloD0MI4gD6ff+mF8CUhpRSlGgVSzJoFkdAtgxEGiYb83V9lChoBmgJaA9DCNLgtrbwrBLAlIaUUpRoFUsyaBZHQLYMI5eJHiF1fZQoaAZoCWgPQwj99nXgnGESwJSGlFKUaBVLMmgWR0C2DQKeK8+SdX2UKGgGaAloD0MIysNCrWk+FMCUhpRSlGgVSzJoFkdAtgzkAbQ1JnV9lChoBmgJaA9DCJih8UQQ5xHAlIaUUpRoFUsyaBZHQLYMwYoAn2J1fZQoaAZoCWgPQwi1p+Sc2AMOwJSGlFKUaBVLMmgWR0C2DKEHY6GQdX2UKGgGaAloD0MI7+Nojqy8CsCUhpRSlGgVSzJoFkdAtg19zhgmZ3V9lChoBmgJaA9DCEvMs5JWnAnAlIaUUpRoFUsyaBZHQLYNXytmthd1fZQoaAZoCWgPQwiU3czoR9MawJSGlFKUaBVLMmgWR0C2DTzeoDPodX2UKGgGaAloD0MInnx6bMvgDsCUhpRSlGgVSzJoFkdAtg0cXj2i+XV9lChoBmgJaA9DCDcz+tFwGhLAlIaUUpRoFUsyaBZHQLYOAJhfBvd1fZQoaAZoCWgPQwhoBBvXv7sUwJSGlFKUaBVLMmgWR0C2DeH27FsIdX2UKGgGaAloD0MIgZauYBtxD8CUhpRSlGgVSzJoFkdAtg2/g/C66XV9lChoBmgJaA9DCIRGsHH9Gw7AlIaUUpRoFUsyaBZHQLYNnwIMSbp1fZQoaAZoCWgPQwjQCgxZ3QoWwJSGlFKUaBVLMmgWR0C2DnjKHO8kdX2UKGgGaAloD0MIYDqt26D2DcCUhpRSlGgVSzJoFkdAtg5aIEbHZXV9lChoBmgJaA9DCDHSi9r9KgnAlIaUUpRoFUsyaBZHQLYON5mh/RV1fZQoaAZoCWgPQwioqWVrfYERwJSGlFKUaBVLMmgWR0C2DhcaS9uhdX2UKGgGaAloD0MIeeblsPuuE8CUhpRSlGgVSzJoFkdAtg71u1ndwnV9lChoBmgJaA9DCMXiN4WVShPAlIaUUpRoFUsyaBZHQLYO1yjYZl51fZQoaAZoCWgPQwgWvr7WpaYOwJSGlFKUaBVLMmgWR0C2DrTIzWPMdX2UKGgGaAloD0MIkLsIU5RbFMCUhpRSlGgVSzJoFkdAtg6USrYGuHV9lChoBmgJaA9DCIPdsG1RxhTAlIaUUpRoFUsyaBZHQLYPbd3B55Z1fZQoaAZoCWgPQwhfmbfqOkQQwJSGlFKUaBVLMmgWR0C2D09DMNc4dX2UKGgGaAloD0MIdbD+z2HOFcCUhpRSlGgVSzJoFkdAtg8s0GeMAHV9lChoBmgJaA9DCL+2fvrPmhrAlIaUUpRoFUsyaBZHQLYPDGPgeil1fZQoaAZoCWgPQwi3ek563/gNwJSGlFKUaBVLMmgWR0C2D+7nkkrxdX2UKGgGaAloD0MIh78ma9RzFsCUhpRSlGgVSzJoFkdAtg/QRNATqXV9lChoBmgJaA9DCNQLPs3JexPAlIaUUpRoFUsyaBZHQLYPrdI5HVh1fZQoaAZoCWgPQwgPQkC+hEoOwJSGlFKUaBVLMmgWR0C2D41aGHpKdX2UKGgGaAloD0MIRbk0fuF1DMCUhpRSlGgVSzJoFkdAthBsPMB6r3V9lChoBmgJaA9DCCzy64fYkBDAlIaUUpRoFUsyaBZHQLYQTZ7ojfN1fZQoaAZoCWgPQwgSoKaWrVUJwJSGlFKUaBVLMmgWR0C2ECs3hn8LdX2UKGgGaAloD0MIYVW9/E5zEcCUhpRSlGgVSzJoFkdAthAKtjkMkXV9lChoBmgJaA9DCHUF24gnWwvAlIaUUpRoFUsyaBZHQLYQ7xcmjTN1fZQoaAZoCWgPQwhaYmU08tkOwJSGlFKUaBVLMmgWR0C2ENCK77KrdX2UKGgGaAloD0MI0m9fB84JE8CUhpRSlGgVSzJoFkdAthCuGlANX3V9lChoBmgJaA9DCGraxTTTPRHAlIaUUpRoFUsyaBZHQLYQjc6Nly11fZQoaAZoCWgPQwgTgeofRCIRwJSGlFKUaBVLMmgWR0C2EWRNEgGKdX2UKGgGaAloD0MImPp5U5F6FcCUhpRSlGgVSzJoFkdAthFFtgrpaHV9lChoBmgJaA9DCMreUs4Xmw/AlIaUUpRoFUsyaBZHQLYRI0Fr2xp1fZQoaAZoCWgPQwgBMQkX8igbwJSGlFKUaBVLMmgWR0C2EQK7yxzJdX2UKGgGaAloD0MINrBVgsVhGcCUhpRSlGgVSzJoFkdAthHtOymhunV9lChoBmgJaA9DCIY97fDX9BHAlIaUUpRoFUsyaBZHQLYRzqKP4mF1fZQoaAZoCWgPQwg8aeGyCisZwJSGlFKUaBVLMmgWR0C2EaxR64UfdX2UKGgGaAloD0MIbQGh9fC1GMCUhpRSlGgVSzJoFkdAthGLyDqW1XV9lChoBmgJaA9DCG1y+KQTiQzAlIaUUpRoFUsyaBZHQLYScFN+LFZ1fZQoaAZoCWgPQwjqkQa3tcUQwJSGlFKUaBVLMmgWR0C2ElHQpnYhdX2UKGgGaAloD0MI4NVyZyZYEcCUhpRSlGgVSzJoFkdAthIvgMtsenV9lChoBmgJaA9DCPxuumWHiBXAlIaUUpRoFUsyaBZHQLYSDvnr6cl1fZQoaAZoCWgPQwgcJ4V5j1MTwJSGlFKUaBVLMmgWR0C2EvJKvmozdX2UKGgGaAloD0MI9Bd6xOg5GMCUhpRSlGgVSzJoFkdAthLTwCr923V9lChoBmgJaA9DCAjm6PF7KxPAlIaUUpRoFUsyaBZHQLYSsVMEidJ1fZQoaAZoCWgPQwiBW3fzVBcTwJSGlFKUaBVLMmgWR0C2EpD8P4EfdX2UKGgGaAloD0MIk+S5vg+nFMCUhpRSlGgVSzJoFkdAthNuKjzqbHV9lChoBmgJaA9DCHBgcqPIihrAlIaUUpRoFUsyaBZHQLYTT4x1xKh1fZQoaAZoCWgPQwiwAKYMHIARwJSGlFKUaBVLMmgWR0C2Ey0SqU/wdX2UKGgGaAloD0MIA9L+B1jLB8CUhpRSlGgVSzJoFkdAthMMh+vyLHV9lChoBmgJaA9DCLd/ZaVJSRLAlIaUUpRoFUsyaBZHQLYT6s/IKdB1fZQoaAZoCWgPQwhfYcH9gCcWwJSGlFKUaBVLMmgWR0C2E8xCY1HfdX2UKGgGaAloD0MIWDz1SIMbEMCUhpRSlGgVSzJoFkdAthOqB8QZoHV9lChoBmgJaA9DCJ30vvG1Zw7AlIaUUpRoFUsyaBZHQLYTidaMaS91fZQoaAZoCWgPQwh1O/vKgxQJwJSGlFKUaBVLMmgWR0C2FGUbcXWOdX2UKGgGaAloD0MIWKg1zTuuFMCUhpRSlGgVSzJoFkdAthRGebutwXV9lChoBmgJaA9DCKYmwRvSiBjAlIaUUpRoFUsyaBZHQLYUJAe7tiR1fZQoaAZoCWgPQwirdk1Ia1wZwJSGlFKUaBVLMmgWR0C2FAORkmQbdX2UKGgGaAloD0MIfc7drpdmFcCUhpRSlGgVSzJoFkdAthTgxEfDDXV9lChoBmgJaA9DCACpTZzc7w7AlIaUUpRoFUsyaBZHQLYUwprk8zR1fZQoaAZoCWgPQwi2os1xbhMOwJSGlFKUaBVLMmgWR0C2FKCcXm/4dX2UKGgGaAloD0MIfuTWpNviEMCUhpRSlGgVSzJoFkdAthSAnx8UmHV9lChoBmgJaA9DCAYSFD/G7BHAlIaUUpRoFUsyaBZHQLYVWkRzzVd1fZQoaAZoCWgPQwjnHafoSA4KwJSGlFKUaBVLMmgWR0C2FTuZTho/dX2UKGgGaAloD0MIofgx5q61G8CUhpRSlGgVSzJoFkdAthUZGOMl1XV9lChoBmgJaA9DCOzCD86nThDAlIaUUpRoFUsyaBZHQLYU+I68xsV1fZQoaAZoCWgPQwjRI0bPLVQZwJSGlFKUaBVLMmgWR0C2FdyhvitJdX2UKGgGaAloD0MIVMN+T6xTDsCUhpRSlGgVSzJoFkdAthW+C9RJmXV9lChoBmgJaA9DCF2HakqyzhfAlIaUUpRoFUsyaBZHQLYVm5paibl1fZQoaAZoCWgPQwhBKVq5F7gbwJSGlFKUaBVLMmgWR0C2FXsrNGExdX2UKGgGaAloD0MIqmBUUidgEcCUhpRSlGgVSzJoFkdAthZnmfXf7HV9lChoBmgJaA9DCANC6+HLBBDAlIaUUpRoFUsyaBZHQLYWSQ+EAYJ1fZQoaAZoCWgPQwj9+EuL+vQQwJSGlFKUaBVLMmgWR0C2FiajWTX8dX2UKGgGaAloD0MIBcHj27smC8CUhpRSlGgVSzJoFkdAthYGYplSTHV9lChoBmgJaA9DCEOSWb3DfRjAlIaUUpRoFUsyaBZHQLYW5MnJDE51fZQoaAZoCWgPQwi1w1+TNYoRwJSGlFKUaBVLMmgWR0C2FsYmkWRBdX2UKGgGaAloD0MIMhzPZ0CdFsCUhpRSlGgVSzJoFkdAthajrnkkr3V9lChoBmgJaA9DCOEM/n4x+w3AlIaUUpRoFUsyaBZHQLYWgx3V0911ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (848 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.96897890670225, "std_reward": 0.9290196482150213, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T15:50:51.374217"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb48fbaa10e12ca32f9f9e4fd3000e1796cb3e5a45a45b2992c1182545f48943
3
+ size 3056