Empathic-Insight-Face-Small / EmoNet-Face-Small.html
ChristophSchuhmann's picture
Upload 46 files
05000ef verified
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Dynamic Emotion Prediction Visualization (Softmax, Mean Subtracted)</title>
<style>
body { font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; margin: 20px; background-color: #f9fafb; color: #1f2937; line-height: 1.6; }
h1 { text-align: center; color: #111827; border-bottom: 2px solid #e5e7eb; padding-bottom: 10px; margin-bottom: 30px; font-weight: 600;}
h2 { font-size: 1.1em; color: #374151; margin-top: 0; font-weight: 500; word-break: break-all; margin-bottom: 15px;}
h3 { font-size: 1.0em; color: #4b5563; margin-top: 15px; margin-bottom: 10px; border-top: 1px solid #e5e7eb; padding-top: 15px; font-weight: 600; }
.sample {
background-color: #ffffff;
border: 1px solid #d1d5db;
margin-bottom: 25px;
padding: 15px;
border-radius: 8px;
box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1), 0 1px 2px -1px rgba(0, 0, 0, 0.1);
overflow: hidden;
}
.sample-content { display: flex; flex-wrap: wrap; gap: 20px; align-items: flex-start; }
.image-container { flex: 0 0 300px; max-width: 100%; }
.image-container img {
max-width: 100%; height: auto; display: block; border: 1px solid #e5e7eb; border-radius: 6px;
background-color: #f3f4f6; /* Background for transparent images */
}
.image-container p { font-size: 0.75em; color: #6b7280; margin-top: 4px; word-wrap: break-word; }
.predictions-container { flex: 1; min-width: 350px; } /* Slightly wider */
.dimension-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); /* Adjusted min-width for longer scores */
gap: 6px 10px;
margin-top: 8px;
}
.dimension-item {
background-color: #f9fafb;
padding: 4px 8px;
border-radius: 4px;
border: 1px solid #e5e7eb;
display: flex;
justify-content: space-between;
align-items: center;
font-size: 0.8rem;
overflow-wrap: break-word;
word-break: break-word;
hyphens: auto;
}
.dimension-name {
color: #374151;
padding-right: 8px;
flex-shrink: 1;
flex-grow: 1;
text-align: left;
margin-right: 5px;
}
.dimension-score {
font-weight: 500;
color: #111827;
background-color: #e5e7eb;
padding: 2px 6px;
border-radius: 4px;
font-family: Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
min-width: 140px; /* Wider for Softmax (MeanSub) (Raw) */
text-align: right;
flex-shrink: 0;
}
.mean-sub-score-paren { /* Style for mean-subtracted score in parentheses */
color: #4b5563;
font-size: 0.95em;
margin-left: 3px;
}
.raw-score { /* Style for the raw score part in parentheses */
color: #6b7280; /* Slightly muted */
font-size: 0.9em;
margin-left: 3px;
}
/* --- Score Highlighting Classes (Applied to dimension-item based on SOFTMAX score rank for non-excluded models) --- */
.dimension-item.highlight-top1 { border-left: 4px solid #DC2626; background-color: #FEE2E2; } /* Red border/bg */
.dimension-item.highlight-top1 .dimension-name { color: #991B1B; font-weight: 600; }
.dimension-item.highlight-top1 .dimension-score { font-weight: bold; }
.dimension-item.highlight-top2 { border-left: 4px solid #D97706; background-color: #FEF3C7; } /* Orange border/bg */
.dimension-item.highlight-top2 .dimension-name { color: #92400E; font-weight: 600; }
.dimension-item.highlight-top2 .dimension-score { font-weight: 600; }
.dimension-item.highlight-top3 { border-left: 4px solid #059669; background-color: #D1FAE5; } /* Green border/bg */
.dimension-item.highlight-top3 .dimension-name { color: #047857; font-weight: 600; }
.dimension-item.highlight-top3 .dimension-score { font-weight: 500; }
.score-na { color: #6b7280; font-style: italic; } /* Gray and italic for N/A */
.error { color: #991b1b; background-color: #fee2e2; border: 1px solid #fecaca; padding: 8px 10px; margin-top: 8px; border-radius: 4px; font-weight: 500; font-size: 0.85em;}
</style>
</head>
<body>
<h1>Dynamic Classifier Prediction Visualization (Softmax, Mean Subtracted)</h1>
<p>Displaying 7 samples (out of 7 successfully inferred). Scores are adjusted by subtracting the mean score from neutral images (using stats from neutral_stats_cache.json).
For models <b>not</b> containing keywords [&#x27;valence&#x27;, &#x27;arousal&#x27;, &#x27;dominance&#x27;, &#x27;vulnerability&#x27;], softmax probability over the mean-subtracted scores is shown first, followed by the mean-subtracted and raw scores in parentheses.
For excluded models, only mean-subtracted and raw scores are shown.
Highlighting indicates the top 3 highest <b>softmax</b> scores among the non-excluded models for each image (1st: Red, 2nd: Orange, 3rd: Green).</p>
<hr>
<div class="sample">
<h2>1. 1.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 1.jpg">
<p>Path: ./1.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-1.20)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(-0.32)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">-0.43 <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.13)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.013 <span class="mean-sub-score-paren">(0.06)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.245 <span class="mean-sub-score-paren">(2.99)</span> <span class="raw-score">(3.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.81)</span> <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.046 <span class="mean-sub-score-paren">(1.31)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(-0.40)</span> <span class="raw-score">(1.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.028 <span class="mean-sub-score-paren">(0.82)</span> <span class="raw-score">(0.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.63)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(0.59)</span> <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.019 <span class="mean-sub-score-paren">(0.42)</span> <span class="raw-score">(0.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.029 <span class="mean-sub-score-paren">(0.87)</span> <span class="raw-score">(2.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">-0.15 <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.042 <span class="mean-sub-score-paren">(1.24)</span> <span class="raw-score">(2.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.08)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.037 <span class="mean-sub-score-paren">(1.09)</span> <span class="raw-score">(1.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-1.23)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">0.32 <span class="raw-score">(2.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-1.20)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(0.12)</span> <span class="raw-score">(0.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.64)</span> <span class="raw-score">(-0.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(0.35)</span> <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.033 <span class="mean-sub-score-paren">(0.97)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(-0.29)</span> <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.188 <span class="mean-sub-score-paren">(2.72)</span> <span class="raw-score">(2.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.026 <span class="mean-sub-score-paren">(0.75)</span> <span class="raw-score">(0.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(-0.46)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.013 <span class="mean-sub-score-paren">(0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(-0.45)</span> <span class="raw-score">(0.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(0.29)</span> <span class="raw-score">(0.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.02)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">-0.38 <span class="raw-score">(-0.5)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>2. 2.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 2.jpg">
<p>Path: ./2.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.26)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.076 <span class="mean-sub-score-paren">(2.57)</span> <span class="raw-score">(2.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(0.34)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">0.21 <span class="raw-score">(2.9)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.453 <span class="mean-sub-score-paren">(4.35)</span> <span class="raw-score">(4.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.050 <span class="mean-sub-score-paren">(2.14)</span> <span class="raw-score">(2.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.27)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.65)</span> <span class="raw-score">(3.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.043 <span class="mean-sub-score-paren">(2.00)</span> <span class="raw-score">(2.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.35)</span> <span class="raw-score">(1.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.71)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.72)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(0.00)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(0.88)</span> <span class="raw-score">(2.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">-0.79 <span class="raw-score">(-0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(0.04)</span> <span class="raw-score">(1.3)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.093 <span class="mean-sub-score-paren">(2.76)</span> <span class="raw-score">(2.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.53)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">-0.10 <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.52)</span> <span class="raw-score">(0.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(0.99)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.12)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.35)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.68)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.38)</span> <span class="raw-score">(2.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(0.00)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.007 <span class="mean-sub-score-paren">(0.21)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.103 <span class="mean-sub-score-paren">(2.86)</span> <span class="raw-score">(2.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.48)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.07)</span> <span class="raw-score">(0.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.18)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.06)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">1.67 <span class="raw-score">(1.5)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>3. 3.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 3.jpg">
<p>Path: ./3.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.007 <span class="mean-sub-score-paren">(-1.20)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(-0.32)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.080 <span class="mean-sub-score-paren">(1.22)</span> <span class="raw-score">(1.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">-1.64 <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(-0.12)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.025 <span class="mean-sub-score-paren">(0.05)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(-0.27)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(-0.14)</span> <span class="raw-score">(3.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.45)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.026 <span class="mean-sub-score-paren">(0.10)</span> <span class="raw-score">(2.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.023 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.52)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.033 <span class="mean-sub-score-paren">(0.33)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.024 <span class="mean-sub-score-paren">(0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.039 <span class="mean-sub-score-paren">(0.49)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">-0.02 <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.038 <span class="mean-sub-score-paren">(0.47)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.08)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.019 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">-0.86 <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.031 <span class="mean-sub-score-paren">(0.28)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.032 <span class="mean-sub-score-paren">(0.30)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.037 <span class="mean-sub-score-paren">(0.43)</span> <span class="raw-score">(1.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.025 <span class="mean-sub-score-paren">(0.07)</span> <span class="raw-score">(1.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.68)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(-0.87)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.024 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.023 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.056 <span class="mean-sub-score-paren">(0.87)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.028 <span class="mean-sub-score-paren">(0.16)</span> <span class="raw-score">(0.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(-0.41)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.024 <span class="mean-sub-score-paren">(0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(-0.11)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.019 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.020 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.023 <span class="mean-sub-score-paren">(-0.02)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.022 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.024 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">0.14 <span class="raw-score">(-0.0)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>4. 4.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 4.jpg">
<p>Path: ./4.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.24)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(0.19)</span> <span class="raw-score">(0.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.32)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">0.07 <span class="raw-score">(2.8)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.593 <span class="mean-sub-score-paren">(4.71)</span> <span class="raw-score">(4.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(1.37)</span> <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.27)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-1.04)</span> <span class="raw-score">(3.0)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.057 <span class="mean-sub-score-paren">(2.37)</span> <span class="raw-score">(2.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.56)</span> <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.78)</span> <span class="raw-score">(0.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(0.54)</span> <span class="raw-score">(1.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(0.00)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.039 <span class="mean-sub-score-paren">(1.99)</span> <span class="raw-score">(3.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">-0.80 <span class="raw-score">(-0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(0.75)</span> <span class="raw-score">(2.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(0.52)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.059 <span class="mean-sub-score-paren">(2.41)</span> <span class="raw-score">(2.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.45)</span> <span class="raw-score">(0.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">-0.41 <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.74)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.054 <span class="mean-sub-score-paren">(2.32)</span> <span class="raw-score">(2.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(1.05)</span> <span class="raw-score">(1.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.64)</span> <span class="raw-score">(0.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.40)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.67)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.42)</span> <span class="raw-score">(2.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.46)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(0.79)</span> <span class="raw-score">(2.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.17)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.02)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.06)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">0.19 <span class="raw-score">(0.0)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>5. 5.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 5.jpg">
<p>Path: ./5.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.053 <span class="mean-sub-score-paren">(1.13)</span> <span class="raw-score">(2.4)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.098 <span class="mean-sub-score-paren">(1.75)</span> <span class="raw-score">(2.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(-0.68)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">-0.84 <span class="raw-score">(1.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.14)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-3.19)</span> <span class="raw-score">(0.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.45)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.32)</span> <span class="raw-score">(1.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.116 <span class="mean-sub-score-paren">(1.92)</span> <span class="raw-score">(3.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(-0.53)</span> <span class="raw-score">(0.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(0.00)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-1.25)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">0.15 <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-1.19)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.028 <span class="mean-sub-score-paren">(0.50)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(-0.50)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">0.50 <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-1.22)</span> <span class="raw-score">(0.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(-0.06)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.23)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.23)</span> <span class="raw-score">(1.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-1.10)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.052 <span class="mean-sub-score-paren">(1.12)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.013 <span class="mean-sub-score-paren">(-0.28)</span> <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.032 <span class="mean-sub-score-paren">(0.63)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.076 <span class="mean-sub-score-paren">(1.50)</span> <span class="raw-score">(1.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(-0.09)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(0.07)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.030 <span class="mean-sub-score-paren">(0.56)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.17)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.030 <span class="mean-sub-score-paren">(0.57)</span> <span class="raw-score">(0.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(-0.03)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.020 <span class="mean-sub-score-paren">(0.17)</span> <span class="raw-score">(0.2)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.088 <span class="mean-sub-score-paren">(1.64)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(0.08)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">1.31 <span class="raw-score">(1.2)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>6. 6.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 6.jpg">
<p>Path: ./6.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(-0.60)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.011 <span class="mean-sub-score-paren">(-0.32)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.007 <span class="mean-sub-score-paren">(-0.72)</span> <span class="raw-score">(-0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">-0.69 <span class="raw-score">(2.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.013 <span class="mean-sub-score-paren">(-0.14)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.016 <span class="mean-sub-score-paren">(0.10)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.170 <span class="mean-sub-score-paren">(2.43)</span> <span class="raw-score">(2.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-2.22)</span> <span class="raw-score">(1.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(-0.41)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.036 <span class="mean-sub-score-paren">(0.89)</span> <span class="raw-score">(2.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(-0.51)</span> <span class="raw-score">(1.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.024 <span class="mean-sub-score-paren">(0.48)</span> <span class="raw-score">(1.2)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(0.01)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.017 <span class="mean-sub-score-paren">(0.14)</span> <span class="raw-score">(1.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">-0.41 <span class="raw-score">(-0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(0.18)</span> <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.08)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(-0.53)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">0.44 <span class="raw-score">(2.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.007 <span class="mean-sub-score-paren">(-0.81)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.06)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.023 <span class="mean-sub-score-paren">(0.45)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.006 <span class="mean-sub-score-paren">(-0.87)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.005 <span class="mean-sub-score-paren">(-1.08)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.036 <span class="mean-sub-score-paren">(0.88)</span> <span class="raw-score">(1.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.012 <span class="mean-sub-score-paren">(-0.20)</span> <span class="raw-score">(2.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.044 <span class="mean-sub-score-paren">(1.08)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.170 <span class="mean-sub-score-paren">(2.43)</span> <span class="raw-score">(2.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.023 <span class="mean-sub-score-paren">(0.43)</span> <span class="raw-score">(0.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(-0.44)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.037 <span class="mean-sub-score-paren">(0.90)</span> <span class="raw-score">(2.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.020 <span class="mean-sub-score-paren">(0.28)</span> <span class="raw-score">(0.5)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.057 <span class="mean-sub-score-paren">(1.34)</span> <span class="raw-score">(1.5)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.02)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(-0.06)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.029 <span class="mean-sub-score-paren">(0.67)</span> <span class="raw-score">(0.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.015 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">0.17 <span class="raw-score">(0.0)</span></span>
</div>
</div>
</div>
</div>
</div>
<div class="sample">
<h2>7. 7.jpg</h2>
<div class="sample-content">
<div class="image-container">
<img src="" alt="Image: 7.jpg">
<p>Path: ./7.jpg</p>
</div>
<div class="predictions-container">
<h3>Predicted Scores (Softmax / Mean Subtracted / Raw)</h3>
<div class="dimension-grid">
<div class="dimension-item ">
<span class="dimension-name">model_affection_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.86)</span> <span class="raw-score">(0.4)</span></span>
</div>
<div class="dimension-item highlight-top1">
<span class="dimension-name">model_amusement_best</span>
<span class="dimension-score ">0.584 <span class="mean-sub-score-paren">(5.05)</span> <span class="raw-score">(5.4)</span></span>
</div>
<div class="dimension-item highlight-top3">
<span class="dimension-name">model_anger_best</span>
<span class="dimension-score ">0.075 <span class="mean-sub-score-paren">(2.99)</span> <span class="raw-score">(3.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_arousal_best</span>
<span class="dimension-score ">1.70 <span class="raw-score">(4.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_astonishment_surprise_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.16)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_awe_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(0.02)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_bitterness_best</span>
<span class="dimension-score ">0.018 <span class="mean-sub-score-paren">(1.56)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_concentration_best</span>
<span class="dimension-score ">0.000 <span class="mean-sub-score-paren">(-3.77)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_confusion_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.48)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contemplation_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.90)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contempt_best</span>
<span class="dimension-score ">0.039 <span class="mean-sub-score-paren">(2.36)</span> <span class="raw-score">(2.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_contentment_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.03)</span> <span class="raw-score">(0.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disappointment_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.75)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_disgust_best</span>
<span class="dimension-score ">0.014 <span class="mean-sub-score-paren">(1.30)</span> <span class="raw-score">(1.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_distress_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.24)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_dominance_best</span>
<span class="dimension-score ">1.31 <span class="raw-score">(1.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_doubt_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item highlight-top2">
<span class="dimension-name">model_elation_best</span>
<span class="dimension-score ">0.107 <span class="mean-sub-score-paren">(3.36)</span> <span class="raw-score">(3.4)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_embarrassment_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.22)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_numbness_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.23)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_emotional_vulnerability_best</span>
<span class="dimension-score ">-0.18 <span class="raw-score">(1.6)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fatigue_exhaustion_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.46)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_fear_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.07)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_helplessness_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.25)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_hope_enthusiasm_optimism_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.77)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_impatience_and_irritability_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(0.85)</span> <span class="raw-score">(1.9)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_infatuation_best</span>
<span class="dimension-score ">0.002 <span class="mean-sub-score-paren">(-0.42)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_interest_best</span>
<span class="dimension-score ">0.000 <span class="mean-sub-score-paren">(-2.31)</span> <span class="raw-score">(0.3)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_intoxication_altered_states_of_consciousness_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(0.00)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_jealousy_&amp;_envy_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(1.70)</span> <span class="raw-score">(1.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_longing_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.10)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_malevolence_malice_best</span>
<span class="dimension-score ">0.020 <span class="mean-sub-score-paren">(1.70)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pain_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.01)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pleasure_ecstasy_best</span>
<span class="dimension-score ">0.021 <span class="mean-sub-score-paren">(1.72)</span> <span class="raw-score">(1.8)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_pride_best</span>
<span class="dimension-score ">0.007 <span class="mean-sub-score-paren">(0.65)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_relief_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(0.03)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sadness_best</span>
<span class="dimension-score ">0.001 <span class="mean-sub-score-paren">(-1.23)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sexual_lust_best</span>
<span class="dimension-score ">0.009 <span class="mean-sub-score-paren">(0.84)</span> <span class="raw-score">(1.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_shame_best</span>
<span class="dimension-score ">0.003 <span class="mean-sub-score-paren">(-0.15)</span> <span class="raw-score">(0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_sourness_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.02)</span> <span class="raw-score">(-0.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_teasing_best</span>
<span class="dimension-score ">0.010 <span class="mean-sub-score-paren">(0.95)</span> <span class="raw-score">(1.0)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_thankfulness_gratitude_best</span>
<span class="dimension-score ">0.004 <span class="mean-sub-score-paren">(-0.04)</span> <span class="raw-score">(0.1)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_triumph_best</span>
<span class="dimension-score ">0.008 <span class="mean-sub-score-paren">(0.72)</span> <span class="raw-score">(0.7)</span></span>
</div>
<div class="dimension-item ">
<span class="dimension-name">model_valence_best</span>
<span class="dimension-score ">2.10 <span class="raw-score">(1.9)</span></span>
</div>
</div>
</div>
</div>
</div>
</body>
</html>