Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,83 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
### BioinspiredZephyr-7B: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials using Mixture-of-Experts
|
5 |
+
|
6 |
+
To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties.
|
7 |
+
|
8 |
+
The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity.
|
9 |
+
|
10 |
+
The model is based on HuggingFaceH4/zephyr-7b-beta.
|
11 |
+
|
12 |
+

|
13 |
+
|
14 |
+
This model is based on work reported in https://doi.org/10.1002/advs.202306724.
|
15 |
+
|
16 |
+
This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended).
|
17 |
+
|
18 |
+
```
|
19 |
+
from llama_cpp import Llama
|
20 |
+
|
21 |
+
model_path='./BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf'
|
22 |
+
chat_format="mistral-instruct"
|
23 |
+
|
24 |
+
llm = Llama(model_path=model_path,
|
25 |
+
n_gpu_layers=-1,verbose= True,
|
26 |
+
n_ctx=10000,
|
27 |
+
#main_gpu=0,
|
28 |
+
chat_format=chat_format,
|
29 |
+
#split_mode=llama_cpp.LLAMA_SPLIT_LAYER
|
30 |
+
)
|
31 |
+
```
|
32 |
+
|
33 |
+
Or, download directly from Hugging Face:
|
34 |
+
|
35 |
+
```
|
36 |
+
from llama_cpp import Llama
|
37 |
+
|
38 |
+
model_path='lamm-mit/BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf'
|
39 |
+
chat_format="mistral-instruct"
|
40 |
+
|
41 |
+
llm = Llama.from_pretrained(
|
42 |
+
repo_id=model_path,
|
43 |
+
filename="*q5_K_M.gguf",
|
44 |
+
verbose=True,
|
45 |
+
n_gpu_layers=-1,
|
46 |
+
n_ctx=10000,
|
47 |
+
#main_gpu=0,
|
48 |
+
chat_format=chat_format,
|
49 |
+
)
|
50 |
+
```
|
51 |
+
For inference:
|
52 |
+
```
|
53 |
+
def generate_BioinspiredZephyr_7B(system_prompt='You are an expert in biological materials, mechanics and related topics.',
|
54 |
+
prompt="What is spider silk?",
|
55 |
+
temperature=0.0,
|
56 |
+
max_tokens=10000,
|
57 |
+
):
|
58 |
+
if system_prompt==None:
|
59 |
+
messages=[
|
60 |
+
{"role": "user", "content": prompt},
|
61 |
+
]
|
62 |
+
else:
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": system_prompt},
|
65 |
+
{"role": "user", "content": prompt},
|
66 |
+
]
|
67 |
+
|
68 |
+
result=llm.create_chat_completion(
|
69 |
+
messages=messages,
|
70 |
+
temperature=temperature,
|
71 |
+
max_tokens=max_tokens,
|
72 |
+
)
|
73 |
+
|
74 |
+
start_time = time.time()
|
75 |
+
result=generate_BioinspiredZephyr_7B(system_prompt='You respond accurately.',
|
76 |
+
prompt="What is graphene? Answer with detail.",
|
77 |
+
max_tokens=512, temperature=0.7, )
|
78 |
+
print (result)
|
79 |
+
deltat=time.time() - start_time
|
80 |
+
print("--- %s seconds ---" % deltat)
|
81 |
+
toked=tokenizer(res)
|
82 |
+
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat)
|
83 |
+
```
|