File size: 1,833 Bytes
899ea14
 
d876b34
899ea14
 
 
578c721
0ddaff2
899ea14
 
9dbb2cc
899ea14
 
 
 
 
 
 
9dbb2cc
899ea14
9dbb2cc
 
 
899ea14
 
 
 
 
 
 
 
 
 
 
628aa32
899ea14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34490c1
899ea14
 
 
578c721
 
9dbb2cc
 
 
 
 
899ea14
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wav2vec2-base-finetuned-ks
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-ks

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9236
- Accuracy: 0.8129
- F1: 0.7991

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

BirdClef2023 (Top 20 species represented)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.6415        | 1.0   | 1467 | 1.8215          | 0.4724   | 0.3482 |
| 1.4247        | 2.0   | 2934 | 1.3207          | 0.6457   | 0.5854 |
| 1.0871        | 3.0   | 4401 | 1.0206          | 0.7469   | 0.7164 |
| 0.4278        | 4.0   | 5868 | 0.9235          | 0.8006   | 0.7821 |
| 0.3165        | 5.0   | 7335 | 0.9236          | 0.8129   | 0.7991 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3