main: build = 3003 (d298382a)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1716748134
llama_model_loader: loaded meta data with 24 key-value pairs and 291 tensors from Mistral-7B-v0.3-IMat-GGUF/Mistral-7B-v0.3.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = Mistral-7B-v0.3
llama_model_loader: - kv   2:                          llama.block_count u32              = 32
llama_model_loader: - kv   3:                       llama.context_length u32              = 32768
llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   7:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   8:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 0
llama_model_loader: - kv  11:                           llama.vocab_size u32              = 32768
llama_model_loader: - kv  12:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,32768]   = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv  16:                      tokenizer.ggml.scores arr[f32,32768]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,32768]   = [2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  20:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  22:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  291 tensors
llm_load_vocab: special tokens definition check successful ( 1027/32768 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32768
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = all F32
llm_load_print_meta: model params     = 7.25 B
llm_load_print_meta: model size       = 27.00 GiB (32.00 BPW) 
llm_load_print_meta: general.name     = Mistral-7B-v0.3
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 781 '<0x0A>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.30 MiB
llm_load_tensors: offloading 25 repeating layers to GPU
llm_load_tensors: offloaded 25/33 layers to GPU
llm_load_tensors:        CPU buffer size = 27649.02 MiB
llm_load_tensors:      CUDA0 buffer size = 20800.78 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =    14.00 MiB
llama_kv_cache_init:      CUDA0 KV buffer size =    50.00 MiB
llama_new_context_with_model: KV self size  =   64.00 MiB, K (f16):   32.00 MiB, V (f16):   32.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.12 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   584.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.01 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 81

system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 133.793 ms
compute_imatrix: computing over 228 chunks with batch_size 512
compute_imatrix: 0.84 seconds per pass - ETA 3.18 minutes
[1]3.6887,[2]2.7710,[3]2.8053,[4]2.9263,[5]3.2772,[6]3.2192,[7]2.9588,[8]3.3808,[9]3.5098,
save_imatrix: stored collected data after 10 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[10]3.8600,[11]4.0156,[12]3.9434,[13]4.1868,[14]3.9891,[15]4.3176,[16]4.4575,[17]4.6694,[18]4.7922,[19]4.9315,
save_imatrix: stored collected data after 20 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[20]5.0376,[21]5.1603,[22]5.0485,[23]4.8667,[24]4.9439,[25]4.7118,[26]4.5371,[27]4.4214,[28]4.3613,[29]4.3522,
save_imatrix: stored collected data after 30 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[30]4.4437,[31]4.5603,[32]4.6703,[33]4.6912,[34]4.7585,[35]4.6052,[36]4.5137,[37]4.4660,[38]4.4682,[39]4.4583,
save_imatrix: stored collected data after 40 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[40]4.4212,[41]4.4608,[42]4.4195,[43]4.4770,[44]4.5632,[45]4.5759,[46]4.6612,[47]4.7868,[48]4.8921,[49]5.0255,
save_imatrix: stored collected data after 50 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[50]5.1063,[51]5.1274,[52]5.0926,[53]5.0579,[54]4.9702,[55]5.0257,[56]5.0751,[57]5.1272,[58]5.1711,[59]5.1854,
save_imatrix: stored collected data after 60 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[60]5.2564,[61]5.2934,[62]5.3388,[63]5.3548,[64]5.3775,[65]5.4095,[66]5.4457,[67]5.4879,[68]5.5328,[69]5.5510,
save_imatrix: stored collected data after 70 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[70]5.5758,[71]5.5393,[72]5.5005,[73]5.4730,[74]5.4483,[75]5.4336,[76]5.4238,[77]5.4001,[78]5.3556,[79]5.3346,
save_imatrix: stored collected data after 80 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[80]5.3310,[81]5.3055,[82]5.3476,[83]5.3814,[84]5.3983,[85]5.3469,[86]5.3646,[87]5.3315,[88]5.2861,[89]5.2791,
save_imatrix: stored collected data after 90 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[90]5.2740,[91]5.2863,[92]5.2868,[93]5.3020,[94]5.2958,[95]5.2515,[96]5.2190,[97]5.2123,[98]5.2387,[99]5.2521,
save_imatrix: stored collected data after 100 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[100]5.2495,[101]5.2227,[102]5.2017,[103]5.2084,[104]5.2047,[105]5.1942,[106]5.1811,[107]5.1837,[108]5.1907,[109]5.2046,
save_imatrix: stored collected data after 110 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[110]5.1906,[111]5.1971,[112]5.1900,[113]5.1854,[114]5.1776,[115]5.1848,[116]5.1825,[117]5.1759,[118]5.1510,[119]5.1563,
save_imatrix: stored collected data after 120 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[120]5.1792,[121]5.1875,[122]5.1834,[123]5.1921,[124]5.1992,[125]5.2200,[126]5.1767,[127]5.1732,[128]5.1547,[129]5.1287,
save_imatrix: stored collected data after 130 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[130]5.1449,[131]5.1199,[132]5.0965,[133]5.0710,[134]5.0473,[135]5.0219,[136]4.9990,[137]4.9776,[138]4.9583,[139]4.9439,
save_imatrix: stored collected data after 140 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[140]4.9404,[141]4.9330,[142]4.9132,[143]4.9075,[144]4.8956,[145]4.8864,[146]4.8768,[147]4.8661,[148]4.8616,[149]4.8490,
save_imatrix: stored collected data after 150 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[150]4.8407,[151]4.8543,[152]4.8336,[153]4.8377,[154]4.8609,[155]4.8827,[156]4.8943,[157]4.9074,[158]4.9254,[159]4.9562,
save_imatrix: stored collected data after 160 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[160]4.9729,[161]4.9883,[162]4.9924,[163]4.9994,[164]5.0147,[165]5.0150,[166]5.0230,[167]5.0376,[168]5.0464,[169]5.0597,
save_imatrix: stored collected data after 170 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[170]5.0592,[171]5.0757,[172]5.0884,[173]5.0913,[174]5.1014,[175]5.0897,[176]5.1058,[177]5.1118,[178]5.1265,[179]5.1225,
save_imatrix: stored collected data after 180 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[180]5.1375,[181]5.1385,[182]5.1383,[183]5.1360,[184]5.1356,[185]5.1441,[186]5.1511,[187]5.1701,[188]5.1731,[189]5.1560,
save_imatrix: stored collected data after 190 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[190]5.1865,[191]5.2168,[192]5.2454,[193]5.2908,[194]5.3229,[195]5.3319,[196]5.3409,[197]5.3252,[198]5.3296,[199]5.3455,
save_imatrix: stored collected data after 200 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[200]5.3699,[201]5.3676,[202]5.3656,[203]5.3719,[204]5.3840,[205]5.3879,[206]5.3943,[207]5.4031,[208]5.4108,[209]5.4244,
save_imatrix: stored collected data after 210 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[210]5.4449,[211]5.4363,[212]5.4373,[213]5.4324,[214]5.4289,[215]5.4240,[216]5.4178,[217]5.4146,[218]5.4271,[219]5.4128,
save_imatrix: stored collected data after 220 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat
[220]5.4227,[221]5.4519,[222]5.4685,[223]5.4930,[224]5.5081,[225]5.5092,[226]5.4868,[227]5.4691,[228]5.4543,
save_imatrix: stored collected data after 228 chunks in Mistral-7B-v0.3-IMat-GGUF/imatrix.dat

llama_print_timings:        load time =    3151.50 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time =  180433.68 ms / 116736 tokens (    1.55 ms per token,   646.97 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =  183387.46 ms / 116737 tokens

Final estimate: PPL = 5.4543 +/- 0.04992