llama_model_loader: loaded meta data with 35 key-value pairs and 363 tensors from Mistral-Nemo-Instruct-2407-IMat-GGUF/Mistral-Nemo-Instruct-2407.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Mistral Nemo Instruct 2407
llama_model_loader: - kv   3:                            general.version str              = 2407
llama_model_loader: - kv   4:                           general.finetune str              = Instruct
llama_model_loader: - kv   5:                           general.basename str              = Mistral-Nemo
llama_model_loader: - kv   6:                         general.size_label str              = 12B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                          general.languages arr[str,9]       = ["en", "fr", "de", "es", "it", "pt", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 40
llama_model_loader: - kv  10:                       llama.context_length u32              = 1024000
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 5120
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                 llama.attention.key_length u32              = 128
llama_model_loader: - kv  18:               llama.attention.value_length u32              = 128
llama_model_loader: - kv  19:                          general.file_type u32              = 7
llama_model_loader: - kv  20:                           llama.vocab_size u32              = 131072
llama_model_loader: - kv  21:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  22:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = tekken
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,131072]  = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,131072]  = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,269443]  = ["Ġ Ġ", "Ġ t", "e r", "i n", "Ġ �...
llama_model_loader: - kv  28:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  29:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  30:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  31:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  32:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  33:                    tokenizer.chat_template str              = {%- if messages[0]['role'] == 'system...
llama_model_loader: - kv  34:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q8_0:  282 tensors
llm_load_vocab: special tokens cache size = 1000
llm_load_vocab: token to piece cache size = 0.8498 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 131072
llm_load_print_meta: n_merges         = 269443
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 1024000
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 1024000
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 13B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 12.25 B
llm_load_print_meta: model size       = 12.12 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Mistral Nemo Instruct 2407
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 1196 'Ä'
llm_load_print_meta: max token length = 150
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.34 MiB
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors:        CPU buffer size =   680.00 MiB
llm_load_tensors:      CUDA0 buffer size = 11731.58 MiB
............................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =    80.00 MiB
llama_new_context_with_model: KV self size  =   80.00 MiB, K (f16):   40.00 MiB, V (f16):   40.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.50 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   266.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    11.01 MiB
llama_new_context_with_model: graph nodes  = 1286
llama_new_context_with_model: graph splits = 2

system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 99.114 ms
compute_imatrix: computing over 128 chunks with batch_size 512
compute_imatrix: 0.92 seconds per pass - ETA 1.95 minutes
[1]5.2918,[2]3.7923,[3]3.4130,[4]4.1305,[5]4.0173,[6]3.4890,[7]3.8390,[8]4.1619,[9]4.4018,
save_imatrix: stored collected data after 10 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[10]4.0506,[11]4.3860,[12]4.6928,[13]5.0106,[14]5.2390,[15]5.5682,[16]5.7882,[17]5.9757,[18]6.2078,[19]5.9615,
save_imatrix: stored collected data after 20 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[20]6.0467,[21]6.1736,[22]6.1387,[23]6.3176,[24]6.3173,[25]6.5500,[26]6.3835,[27]6.1659,[28]6.1253,[29]6.0949,
save_imatrix: stored collected data after 30 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[30]6.0361,[31]5.7638,[32]5.5991,[33]5.5706,[34]5.5152,[35]5.4836,[36]5.6390,[37]5.6570,[38]5.7241,[39]5.8588,
save_imatrix: stored collected data after 40 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[40]5.9745,[41]6.0201,[42]5.9388,[43]5.9528,[44]6.0180,[45]6.0375,[46]5.9824,[47]6.0451,[48]6.1780,[49]6.2906,
save_imatrix: stored collected data after 50 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[50]6.1854,[51]6.2280,[52]6.2645,[53]6.3241,[54]6.4478,[55]6.5426,[56]6.5950,[57]6.6163,[58]6.6213,[59]6.5759,
save_imatrix: stored collected data after 60 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[60]6.5416,[61]6.4588,[62]6.4180,[63]6.4422,[64]6.4844,[65]6.4035,[66]6.3765,[67]6.3733,[68]6.3543,[69]6.3294,
save_imatrix: stored collected data after 70 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[70]6.3320,[71]6.3605,[72]6.3260,[73]6.3491,[74]6.3383,[75]6.3215,[76]6.3317,[77]6.3033,[78]6.2680,[79]6.2206,
save_imatrix: stored collected data after 80 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[80]6.2476,[81]6.2664,[82]6.2552,[83]6.2480,[84]6.2366,[85]6.2680,[86]6.2172,[87]6.1927,[88]6.2088,[89]6.2263,
save_imatrix: stored collected data after 90 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[90]6.2319,[91]6.2014,[92]6.1644,[93]6.1216,[94]6.0799,[95]6.0400,[96]6.0043,[97]5.9634,[98]5.9249,[99]5.8866,
save_imatrix: stored collected data after 100 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[100]5.9012,[101]5.9680,[102]6.0227,[103]6.0767,[104]6.1288,[105]6.2229,[106]6.2293,[107]6.2602,[108]6.2032,[109]6.2032,
save_imatrix: stored collected data after 110 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[110]6.1724,[111]6.1121,[112]6.0538,[113]6.0541,[114]6.1129,[115]6.1164,[116]6.1133,[117]6.1276,[118]6.1574,[119]6.1555,
save_imatrix: stored collected data after 120 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat
[120]6.1496,[121]6.1651,[122]6.1554,[123]6.1832,[124]6.1819,[125]6.1751,[126]6.2086,[127]6.2030,[128]6.2041,
save_imatrix: stored collected data after 128 chunks in Mistral-Nemo-Instruct-2407-IMat-GGUF/imatrix.dat

llama_print_timings:        load time =    5276.23 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time =  100983.08 ms / 65536 tokens (    1.54 ms per token,   648.98 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =  106203.71 ms / 65537 tokens

Final estimate: PPL = 6.2041 +/- 0.08244