File size: 1,857 Bytes
7896878 c3aec0c 7896878 f75480a b3feacd 03c9e5d b3feacd c3aec0c 03c9e5d b3feacd 012d799 8711705 b3feacd 99041cc bbc1036 c3aec0c bbc1036 b3feacd 8711705 b3feacd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: openai-community/gpt2
datasets:
- emotion
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: emotion-gpt2-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion-gpt2-lora
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1521
- Accuracy: 0.933
- F1: 0.9334
- Precision: 0.9347
- Recall: 0.933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 250 | 0.3191 | 0.8895 | 0.8902 | 0.8933 | 0.8895 |
| 0.6939 | 2.0 | 500 | 0.1939 | 0.935 | 0.9349 | 0.9352 | 0.935 |
| 0.6939 | 3.0 | 750 | 0.1689 | 0.931 | 0.9315 | 0.9329 | 0.931 |
| 0.1897 | 4.0 | 1000 | 0.1521 | 0.933 | 0.9334 | 0.9347 | 0.933 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |