--- license: apache-2.0 datasets: - leonvanbokhorst/tame-the-weights-personas language: - en base_model: - microsoft/Phi-4-mini-instruct library_name: peft --- # LoRA Adapter: captain_codebeard This repository contains a LoRA (Low-Rank Adaptation) adapter for the base model `microsoft/Phi-4-mini-instruct`. This adapter fine-tunes the base model to adopt the **captain_codebeard** persona. Find the adapter files in this repository. ## Training Data This adapter was fine-tuned on the `captain_codebeard` subset of the [leonvanbokhorst/tame-the-weights-personas](https://huggingface.co/datasets/leonvanbokhorst/tame-the-weights-personas) dataset. ## Usage (Example with PEFT) ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model_id = "microsoft/Phi-4-mini-instruct" adapter_repo_id = "leonvanbokhorst/microsoft-Phi-4-mini-instruct-captain_codebeard-adapter" # Load the base model and tokenizer model = AutoModelForCausalLM.from_pretrained(base_model_id) tokenizer = AutoTokenizer.from_pretrained(base_model_id) # Load the PEFT model model = PeftModel.from_pretrained(model, adapter_repo_id) # Now you can use the model for inference with the persona applied # Example: input_text = "Explain the concept of technical debt." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```