--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 9fe7fc96-6a8c-4ab3-ba1e-77f1980fb606 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6fa3d5264c24b5f4_train_data.json ds_type: json format: custom path: /workspace/input_data/6fa3d5264c24b5f4_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso04/9fe7fc96-6a8c-4ab3-ba1e-77f1980fb606 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000204 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/6fa3d5264c24b5f4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1e1aba89-0560-407f-87c7-7610230f4d86 wandb_project: 04a wandb_run: your_name wandb_runid: 1e1aba89-0560-407f-87c7-7610230f4d86 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 9fe7fc96-6a8c-4ab3-ba1e-77f1980fb606 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000204 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.1523 | | 2.1069 | 0.0036 | 50 | 0.9481 | | 1.8486 | 0.0071 | 100 | 0.8498 | | 1.6075 | 0.0107 | 150 | 0.8301 | | 1.7282 | 0.0143 | 200 | 0.7920 | | 1.6895 | 0.0179 | 250 | 0.7721 | | 1.678 | 0.0214 | 300 | 0.7368 | | 1.5436 | 0.0250 | 350 | 0.7127 | | 1.5503 | 0.0286 | 400 | 0.7006 | | 1.5577 | 0.0322 | 450 | 0.6951 | | 1.643 | 0.0357 | 500 | 0.6941 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1