File size: 24,633 Bytes
c28c53e 24b42f1 c28c53e 24b42f1 c28c53e 24b42f1 c28c53e 24b42f1 c28c53e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
from __future__ import annotations
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data
from .configuration_gpt_bert import ModelConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutput,
CausalLMOutput
)
from typing import Optional, Union
class Layer(nn.Module):
def __init__(self: Layer, config: ModelConfig, layer_idx: int = 0):
super().__init__()
self.attention = Attention(config)
self.mlp = FeedForward(config)
self.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx)))
self.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx)))
def forward(self: Layer, x: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
attention: torch.Tensor
attention_probs: torch.Tensor
attention, attention_probs = self.attention(x, attention_mask, relative_embedding)
x += attention
x += self.mlp(x)
return x, attention_probs
class MaskClassifier(nn.Module):
def __init__(self: MaskClassifier, config: ModelConfig, subword_embedding: nn.Parameter):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self: MaskClassifier, hidden_size: int, embedding: nn.Parameter):
std: float = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self: MaskClassifier, x: torch.Tensor, masked_lm_labels: torch.Tensor | None = None) -> torch.Tensor:
if masked_lm_labels is not None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
class GeGLU(nn.Module):
def forward(self: GeGLU, x: torch.Tensor) -> torch.Tensor:
gate: torch.Tensor
x, gate = x.chunk(2, dim=-1)
x = x * F.gelu(gate, approximate='tanh')
return x
class FeedForward(nn.Module):
def __init__(self: FeedForward, config: ModelConfig) -> None:
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self: FeedForward, hidden_size: int) -> None:
std: float = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self: FeedForward, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self: MaskedSoftmax, x: torch.Tensor, mask: torch.Tensor, dim: int) -> torch.Tensor:
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self: MaskedSoftmax, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
output: torch.Tensor
output, = self.saved_tensors
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
class Attention(nn.Module):
def __init__(self: Attention, config: ModelConfig) -> None:
super().__init__()
self.config: ModelConfig = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size: int = config.hidden_size
self.num_heads: int = config.num_attention_heads
self.head_size: int = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
position_indices: torch.Tensor = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices: torch.Tensor = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=False)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale: float = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self: Attention, relative_pos: torch.Tensor, bucket_size: int, max_position: int) -> torch.Tensor:
sign: torch.Tensor = torch.sign(relative_pos)
mid: int = bucket_size // 2
abs_pos: torch.Tensor = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos: torch.Tensor = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos: torch.Tensor = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self: Attention) -> None:
std: float = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_vg.bias.data.zero_()
self.out_proj.bias.data.zero_()
def _create_position_tensors(self: Attention, relative_embedding: torch.Tensor, query_len: int, key_len: int) -> tuple[torch.Tensor, torch.Tensor]:
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
query_pos, key_pos = pos.chunk(2, dim=-1)
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
return query_pos, key_pos
def attention_operation(self: Attention, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: torch.Tensor, query_pos: torch.Tensor, key_pos: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
key_len: int
batch_size: int
key_len, batch_size, _ = key.size()
query_len: int
query_len, _, _ = query.size()
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_probs: torch.Tensor = torch.bmm(query, key.transpose(1, 2) * self.scale)
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_probs = attention_probs.view(batch_size, self.num_heads, query_len, key_len)
attention_probs.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
attention_probs.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
attention_probs = MaskedSoftmax.apply(attention_probs, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
attention_output: torch.Tensor = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
attention_output = attention_output.transpose(0, 1).reshape(query_len, batch_size, self.hidden_size) # shape: [Q, B, H*D]
return attention_output, attention_probs
def forward(self: Attention, hidden_states: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
key_len: int
batch_size: int
key_len, batch_size, _ = hidden_states.size()
query_len: int = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
gate = F.gelu(gate)
query_pos: torch.Tensor
key_pos: torch.Tensor
query_pos, key_pos = self._create_position_tensors(relative_embedding, query_len, key_len)
attention_output: torch.Tensor
attention_probs: torch.Tensor
attention_output, attention_probs = self.attention_operation(query, key, value, attention_mask, query_pos, key_pos)
attention_output = attention_output * gate
attention_output = self.post_layer_norm(attention_output)
attention_output = self.out_proj(attention_output)
attention_output = self.dropout(attention_output)
return attention_output, attention_probs
class Embedding(nn.Module):
def __init__(self: Embedding, config: ModelConfig):
super().__init__()
self.hidden_size: int = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self: Embedding):
std: float = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self: Embedding, input_ids: torch.Tensor):
word_embedding: torch.Tensor = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings: torch.Tensor = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
class GPTBERTPreTrainedModel(PreTrainedModel):
config_class = ModelConfig
supports_gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
raise NotImplementedError("Gradient checkpointing is not supported by this model")
def _init_weights(self, module):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
if isinstance(module, nn.Linear):
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GPTBERT(GPTBERTPreTrainedModel):
def __init__(self, config: ModelConfig, is_causal: bool, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.embedding = Embedding(config)
self.layers = nn.ModuleList([Layer(config) for _ in range(config.num_layers)])
self.is_causal = is_causal
def get_input_embeddings(self):
return self.embedding.word_embedding
def set_input_embeddings(self, value):
self.embedding.word_embedding = value
def get_contextualized_embeddings(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> list[torch.Tensor]:
"""
"""
input_shape = input_ids.size()
batch_size, seq_length = input_shape
if attention_mask is None:
attention_mask = input_ids.new_zeros((batch_size, seq_length), dtype=torch.bool).unsqueeze(1).unsqueeze(2)
else:
attention_mask = ~attention_mask.bool()
if len(attention_mask.size()) == 2:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
elif len(attention_mask.size()) == 3:
attention_mask = attention_mask.unsqueeze(1)
if self.is_causal:
attention_mask = attention_mask | input_ids.new_ones((seq_length, seq_length), dtype=torch.bool).triu(1).unsqueeze(0).unsqueeze(0)
static_embeddings, relative_embeddings = self.embedding(input_ids.t())
contextualized_embeddings = [static_embeddings]
attention_probs = []
for layer in self.layers:
layer_embeddings, layer_attention_probs = layer(contextualized_embeddings[-1], attention_mask, relative_embeddings)
contextualized_embeddings.append(layer_embeddings)
attention_probs.append(layer_attention_probs)
contextualized_embeddings = [emb.transpose(0, 1) for emb in contextualized_embeddings]
last_layer = contextualized_embeddings[-1]
return last_layer, contextualized_embeddings, attention_probs
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[tuple[torch.Tensor], BaseModelOutput]:
"""
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
if not return_dict:
return (
sequence_output,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
# To do Masked Language Modeling instead, you can replace MyModelForCausalLM by MyModelForMaskedLM
# and change the output type from CausalLMOutput to MaskedLMOutput.
class GPTBERTForCausalLM(GPTBERTPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["head"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.model = GPTBERT(config, is_causal=True, **kwargs)
self.vocab_size = config.vocab_size
self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight)
self.hidden_size = config.hidden_size
def get_output_embeddings(self):
return self.lm_head.nonlinearity[-1].weight
def set_output_embeddings(self, new_embeddings):
self.lm_head.nonlinearity[-1].weight = new_embeddings
def get_input_embeddings(self):
return self.model.embedding.word_embedding
def set_input_embeddings(self, value):
self.model.embedding.word_embedding = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def can_generate(self):
return True
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs
) -> Union[tuple, CausalLMOutput]:
sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask)
subword_prediction = self.lm_head(sequence_output)
loss = None
if labels is not None:
gold_labels = labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels)
if not return_dict:
output = (
subword_prediction,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=subword_prediction,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
class GPTBERTForMaskedLM(GPTBERTPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["head"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.model = GPTBERT(config, is_causal=False, **kwargs)
self.vocab_size = config.vocab_size
self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight)
self.hidden_size = config.hidden_size
def get_output_embeddings(self):
return self.lm_head.nonlinearity[-1].weight
def set_output_embeddings(self, new_embeddings):
self.lm_head.nonlinearity[-1].weight = new_embeddings
def get_input_embeddings(self):
return self.model.embedding.word_embedding
def set_input_embeddings(self, value):
self.model.embedding.word_embedding = value
def set_encoder(self, encoder):
self.model = encoder
def get_encoder(self):
return self.model
def can_generate(self):
return True
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs
) -> Union[tuple, CausalLMOutput]:
sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask)
subword_prediction = self.lm_head(sequence_output)
loss = None
if labels is not None:
gold_labels = labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels)
if not return_dict:
output = (
subword_prediction,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=subword_prediction,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
|