from __future__ import annotations import json import pathlib import copy from typing import Any from transformers.configuration_utils import PretrainedConfig class ModelConfig(PretrainedConfig): def __init__(self: ModelConfig, config_file: pathlib.Path | str | None = None, **kwargs): """ """ super().__init__(**kwargs) if config_file is None: self.attention_probs_dropout_prob: float = 0.1 self.hidden_dropout_prob = 0.1 self.hidden_size = 768 self.intermediate_size = 2560 self.max_sequence_length = 512 self.position_bucket_size = 32 self.num_attention_heads = 12 self.num_layers = 12 self.vocab_size = 8192 self.layer_norm_eps = 1e-5 else: if config_file == "str": config_file = pathlib.Path(config_file) config: dict[str, Any] = json.load(config_file.open("r")) for key, value in config.items(): setattr(self, key, value) def __repr__(self) -> str: return str(self.to_json_string()) def to_dict(self) -> dict[str, Any]: """Serializes this instance to a Python dictionary.""" output: dict[str, Any] = copy.deepcopy(self.__dict__) return output def to_json_string(self) -> str: """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: pathlib.Path | str) -> None: """Save this instance to a json file.""" if isinstance(json_file_path, str): json_file_path: pathlib.Path = pathlib.Path(json_file_path) with json_file_path.open("w", encoding='utf-8') as writer: writer.write(self.to_json_string())