from __future__ import annotations import math import torch import torch.nn as nn import torch.nn.functional as F from torch import _softmax_backward_data as _softmax_backward_data from .configuration_gpt_bert import ModelConfig from transformers.modeling_utils import PreTrainedModel from transformers.modeling_outputs import ( BaseModelOutput, CausalLMOutput ) from typing import Optional, Union class Layer(nn.Module): def __init__(self: Layer, config: ModelConfig, layer_idx: int = 0): super().__init__() self.attention = Attention(config) self.mlp = FeedForward(config) self.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx))) self.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx))) def forward(self: Layer, x: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: attention: torch.Tensor attention_probs: torch.Tensor attention, attention_probs = self.attention(x, attention_mask, relative_embedding) x += attention x += self.mlp(x) return x, attention_probs class MaskClassifier(nn.Module): def __init__(self: MaskClassifier, config: ModelConfig, subword_embedding: nn.Parameter): super().__init__() self.nonlinearity = nn.Sequential( nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.hidden_size, config.hidden_size), nn.GELU(), nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), nn.Dropout(config.hidden_dropout_prob), nn.Linear(subword_embedding.size(1), subword_embedding.size(0)) ) self.initialize(config.hidden_size, subword_embedding) def initialize(self: MaskClassifier, hidden_size: int, embedding: nn.Parameter): std: float = math.sqrt(2.0 / (5.0 * hidden_size)) nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) self.nonlinearity[-1].weight = embedding self.nonlinearity[1].bias.data.zero_() self.nonlinearity[-1].bias.data.zero_() def forward(self: MaskClassifier, x: torch.Tensor, masked_lm_labels: torch.Tensor | None = None) -> torch.Tensor: if masked_lm_labels is not None: x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze()) x = self.nonlinearity(x) return x class GeGLU(nn.Module): def forward(self: GeGLU, x: torch.Tensor) -> torch.Tensor: gate: torch.Tensor x, gate = x.chunk(2, dim=-1) x = x * F.gelu(gate, approximate='tanh') return x class FeedForward(nn.Module): def __init__(self: FeedForward, config: ModelConfig) -> None: super().__init__() self.mlp = nn.Sequential( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), GeGLU(), nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.intermediate_size, config.hidden_size, bias=False), nn.Dropout(config.hidden_dropout_prob) ) self.initialize(config.hidden_size) def initialize(self: FeedForward, hidden_size: int) -> None: std: float = math.sqrt(2.0 / (5.0 * hidden_size)) nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) def forward(self: FeedForward, x: torch.Tensor) -> torch.Tensor: return self.mlp(x) class MaskedSoftmax(torch.autograd.Function): @staticmethod def forward(self: MaskedSoftmax, x: torch.Tensor, mask: torch.Tensor, dim: int) -> torch.Tensor: self.dim = dim x.masked_fill_(mask, float('-inf')) x = torch.softmax(x, self.dim) x.masked_fill_(mask, 0.0) self.save_for_backward(x) return x @staticmethod def backward(self: MaskedSoftmax, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]: output: torch.Tensor output, = self.saved_tensors inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, self.dim, output.dtype) return inputGrad, None, None class Attention(nn.Module): def __init__(self: Attention, config: ModelConfig) -> None: super().__init__() self.config: ModelConfig = config if config.hidden_size % config.num_attention_heads != 0: raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") self.hidden_size: int = config.hidden_size self.num_heads: int = config.num_attention_heads self.head_size: int = config.hidden_size // config.num_attention_heads self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) position_indices: torch.Tensor = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0) position_indices: torch.Tensor = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings) position_indices = config.position_bucket_size - 1 + position_indices self.register_buffer("position_indices", position_indices, persistent=False) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.scale: float = 1.0 / math.sqrt(3 * self.head_size) self.initialize() def make_log_bucket_position(self: Attention, relative_pos: torch.Tensor, bucket_size: int, max_position: int) -> torch.Tensor: sign: torch.Tensor = torch.sign(relative_pos) mid: int = bucket_size // 2 abs_pos: torch.Tensor = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) log_pos: torch.Tensor = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid bucket_pos: torch.Tensor = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() return bucket_pos def initialize(self: Attention) -> None: std: float = math.sqrt(2.0 / (5.0 * self.hidden_size)) nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) self.in_proj_qk.bias.data.zero_() self.in_proj_vg.bias.data.zero_() self.out_proj.bias.data.zero_() def _create_position_tensors(self: Attention, relative_embedding: torch.Tensor, query_len: int, key_len: int) -> tuple[torch.Tensor, torch.Tensor]: pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D] pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D] query_pos, key_pos = pos.chunk(2, dim=-1) query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size) key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size) return query_pos, key_pos def attention_operation(self: Attention, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: torch.Tensor, query_pos: torch.Tensor, key_pos: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: key_len: int batch_size: int key_len, batch_size, _ = key.size() query_len: int query_len, _, _ = query.size() query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) attention_probs: torch.Tensor = torch.bmm(query, key.transpose(1, 2) * self.scale) query = query.view(batch_size, self.num_heads, query_len, self.head_size) key = key.view(batch_size, self.num_heads, query_len, self.head_size) attention_probs = attention_probs.view(batch_size, self.num_heads, query_len, key_len) attention_probs.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale)) attention_probs.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos)) attention_probs = MaskedSoftmax.apply(attention_probs, attention_mask, -1) attention_probs = self.dropout(attention_probs) attention_output: torch.Tensor = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D] attention_output = attention_output.transpose(0, 1).reshape(query_len, batch_size, self.hidden_size) # shape: [Q, B, H*D] return attention_output, attention_probs def forward(self: Attention, hidden_states: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: key_len: int batch_size: int key_len, batch_size, _ = hidden_states.size() query_len: int = key_len if self.position_indices.size(0) < query_len: position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \ - torch.arange(query_len, dtype=torch.long).unsqueeze(0) position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512) position_indices = self.config.position_bucket_size - 1 + position_indices self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True) hidden_states = self.pre_layer_norm(hidden_states) query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D] value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D] gate = F.gelu(gate) query_pos: torch.Tensor key_pos: torch.Tensor query_pos, key_pos = self._create_position_tensors(relative_embedding, query_len, key_len) attention_output: torch.Tensor attention_probs: torch.Tensor attention_output, attention_probs = self.attention_operation(query, key, value, attention_mask, query_pos, key_pos) attention_output = attention_output * gate attention_output = self.post_layer_norm(attention_output) attention_output = self.out_proj(attention_output) attention_output = self.dropout(attention_output) return attention_output, attention_probs class Embedding(nn.Module): def __init__(self: Embedding, config: ModelConfig): super().__init__() self.hidden_size: int = config.hidden_size self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.initialize() def initialize(self: Embedding): std: float = math.sqrt(2.0 / (5.0 * self.hidden_size)) nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) def forward(self: Embedding, input_ids: torch.Tensor): word_embedding: torch.Tensor = self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) relative_embeddings: torch.Tensor = self.relative_layer_norm(self.relative_embedding) return word_embedding, relative_embeddings class GPTBERTPreTrainedModel(PreTrainedModel): config_class = ModelConfig supports_gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): raise NotImplementedError("Gradient checkpointing is not supported by this model") def _init_weights(self, module): std = math.sqrt(2.0 / (5.0 * self.hidden_size)) if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class GPTBERT(GPTBERTPreTrainedModel): def __init__(self, config: ModelConfig, is_causal: bool, **kwargs): super().__init__(config, **kwargs) self.config = config self.hidden_size = config.hidden_size self.embedding = Embedding(config) self.layers = nn.ModuleList([Layer(config) for _ in range(config.num_layers)]) self.is_causal = is_causal def get_input_embeddings(self): return self.embedding.word_embedding def set_input_embeddings(self, value): self.embedding.word_embedding = value def get_contextualized_embeddings(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> list[torch.Tensor]: """ """ input_shape = input_ids.size() batch_size, seq_length = input_shape if attention_mask is None: attention_mask = input_ids.new_zeros((batch_size, seq_length), dtype=torch.bool).unsqueeze(1).unsqueeze(2) else: attention_mask = ~attention_mask.bool() if len(attention_mask.size()) == 2: attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) elif len(attention_mask.size()) == 3: attention_mask = attention_mask.unsqueeze(1) if self.is_causal: attention_mask = attention_mask | input_ids.new_ones((seq_length, seq_length), dtype=torch.bool).triu(1).unsqueeze(0).unsqueeze(0) static_embeddings, relative_embeddings = self.embedding(input_ids.t()) contextualized_embeddings = [static_embeddings] attention_probs = [] for layer in self.layers: layer_embeddings, layer_attention_probs = layer(contextualized_embeddings[-1], attention_mask, relative_embeddings) contextualized_embeddings.append(layer_embeddings) attention_probs.append(layer_attention_probs) contextualized_embeddings = [emb.transpose(0, 1) for emb in contextualized_embeddings] last_layer = contextualized_embeddings[-1] return last_layer, contextualized_embeddings, attention_probs def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[tuple[torch.Tensor], BaseModelOutput]: """ """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask) if not return_dict: return ( sequence_output, *([contextualized_embeddings] if output_hidden_states else []), *([attention_probs] if output_attentions else []) ) return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=contextualized_embeddings if output_hidden_states else None, attentions=attention_probs if output_attentions else None ) # To do Masked Language Modeling instead, you can replace MyModelForCausalLM by MyModelForMaskedLM # and change the output type from CausalLMOutput to MaskedLMOutput. class GPTBERTForCausalLM(GPTBERTPreTrainedModel): _keys_to_ignore_on_load_unexpected = ["head"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.model = GPTBERT(config, is_causal=True, **kwargs) self.vocab_size = config.vocab_size self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight) self.hidden_size = config.hidden_size def get_output_embeddings(self): return self.lm_head.nonlinearity[-1].weight def set_output_embeddings(self, new_embeddings): self.lm_head.nonlinearity[-1].weight = new_embeddings def get_input_embeddings(self): return self.model.embedding.word_embedding def set_input_embeddings(self, value): self.model.embedding.word_embedding = value def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def can_generate(self): return True def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, **kwargs ) -> Union[tuple, CausalLMOutput]: sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask) subword_prediction = self.lm_head(sequence_output) loss = None if labels is not None: gold_labels = labels.flatten() gold_labels = gold_labels[gold_labels != -100] loss = F.cross_entropy(subword_prediction, gold_labels) if not return_dict: output = ( subword_prediction, *([contextualized_embeddings] if output_hidden_states else []), *([attention_probs] if output_attentions else []) ) return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=subword_prediction, hidden_states=contextualized_embeddings if output_hidden_states else None, attentions=attention_probs if output_attentions else None ) def prepare_inputs_for_generation( self, input_ids: torch.Tensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, use_cache: bool = True, num_logits_to_keep: Optional[int] = None, **kwargs, ): # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if past_key_values is not None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases if num_logits_to_keep is not None: model_inputs["num_logits_to_keep"] = num_logits_to_keep model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs class GPTBERTForMaskedLM(GPTBERTPreTrainedModel): _keys_to_ignore_on_load_unexpected = ["head"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.model = GPTBERT(config, is_causal=False, **kwargs) self.vocab_size = config.vocab_size self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight) self.hidden_size = config.hidden_size def get_output_embeddings(self): return self.lm_head.nonlinearity[-1].weight def set_output_embeddings(self, new_embeddings): self.lm_head.nonlinearity[-1].weight = new_embeddings def get_input_embeddings(self): return self.model.embedding.word_embedding def set_input_embeddings(self, value): self.model.embedding.word_embedding = value def set_encoder(self, encoder): self.model = encoder def get_encoder(self): return self.model def can_generate(self): return True def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, **kwargs ) -> Union[tuple, CausalLMOutput]: sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask) subword_prediction = self.lm_head(sequence_output) loss = None if labels is not None: gold_labels = labels.flatten() gold_labels = gold_labels[gold_labels != -100] loss = F.cross_entropy(subword_prediction, gold_labels) if not return_dict: output = ( subword_prediction, *([contextualized_embeddings] if output_hidden_states else []), *([attention_probs] if output_attentions else []) ) return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=subword_prediction, hidden_states=contextualized_embeddings if output_hidden_states else None, attentions=attention_probs if output_attentions else None )