Update README.md
Browse files
README.md
CHANGED
|
@@ -1,22 +1,98 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|Qwen2.5-7B-Instruct|
|
| 17 |
|----|----|
|
| 18 |
|50.0|56.6|
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
### Model Details
|
| 21 |
- Model size: 7B
|
| 22 |
- Context length: 1024
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- DPO
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
datasets:
|
| 7 |
+
- lightblue/response-dataset-plus-qwen-judged
|
| 8 |
+
language:
|
| 9 |
+
- ja
|
| 10 |
+
base_model:
|
| 11 |
+
- Qwen/Qwen2.5-7B-Instruct
|
| 12 |
---
|
| 13 |
|
| 14 |
+
[日本語モデルカード](#japanese)
|
| 15 |
|
| 16 |
+
[日本語のブログ]()
|
| 17 |
|
| 18 |
+
# Karasu-DPO-7B
|
| 19 |
|
| 20 |
+
This is a Japanese version of the [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model which was DPO trained using synthetic Japanese conversation data.
|
| 21 |
|
| 22 |
+
This model outperforms the base [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model on the [arena-hard-auto-multilingual](https://github.com/lightblue-tech/arena-hard-auto-multilingual) chat benchmark:
|
| 23 |
+
|
| 24 |
+
|Qwen2.5-7B-Instruct|Karasu-DPO-7B|
|
| 25 |
|----|----|
|
| 26 |
|50.0|56.6|
|
| 27 |
|
| 28 |
+
We recommend this model for use as a general conversatio AI.
|
| 29 |
+
|
| 30 |
+
# How to use
|
| 31 |
+
|
| 32 |
+
<ul>
|
| 33 |
+
<li><b>vLLM</b>
|
| 34 |
+
|
| 35 |
+
Install [vLLM](https://github.com/vllm-project/vllm/) using `pip install vllm`.
|
| 36 |
+
|
| 37 |
+
<details open>
|
| 38 |
+
<summary>Show vLLM code</summary>
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from vllm import LLM, SamplingParams
|
| 42 |
+
|
| 43 |
+
llm = LLM(
|
| 44 |
+
model="lightblue/DeepSeek-R1-Distill-Qwen-7B-Japanese",
|
| 45 |
+
max_model_len=8_000
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
sampling_params = SamplingParams(
|
| 49 |
+
temperature=0.5,
|
| 50 |
+
max_tokens=8_000,
|
| 51 |
+
repetition_penalty=1.1
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
prompts = [
|
| 55 |
+
"""学校には1クラスにつき20人の生徒がおり、クラスは合計3つあります。
|
| 56 |
+
学校全体では男子と女子がそれぞれ50%ずついます。
|
| 57 |
+
1つ目のクラスには女子が15人、2つ目のクラスには女子が12人います。
|
| 58 |
+
3つ目のクラスには何人の男子がいますか?"""
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
conversations = [
|
| 62 |
+
[{"role": "user", "content": x}] for x in prompts
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
outputs = llm.chat(conversations, sampling_params=sampling_params)
|
| 66 |
+
|
| 67 |
+
for output in outputs:
|
| 68 |
+
print(output.outputs[0].text)
|
| 69 |
+
|
| 70 |
+
<think>
|
| 71 |
+
# まず、学校の総生徒数を算出します。各クラスに20人の生徒があり、クラスは3つあるため、総生徒数は60人です。
|
| 72 |
+
|
| 73 |
+
# 次に、学校全体で男子と女子は同じ人数で分布しています。したがって、男子と女子各有30人。
|
| 74 |
+
...
|
| 75 |
+
# したがって、3つ目のクラスの男子数は20 - 3 = 17人です。
|
| 76 |
+
# </think>
|
| 77 |
+
|
| 78 |
+
# **解答:**
|
| 79 |
+
|
| 80 |
+
# 学校の総生徒数を算出します。
|
| 81 |
+
...
|
| 82 |
+
# **最終的な答え:**
|
| 83 |
+
# \[
|
| 84 |
+
# \boxed{17}
|
| 85 |
+
# \]
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
</details>
|
| 89 |
+
|
| 90 |
+
<br/>
|
| 91 |
+
|
| 92 |
+
<h1 style="font-size: 48px;" id="japanese">日本語</h3>
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
### Model Details
|
| 97 |
- Model size: 7B
|
| 98 |
- Context length: 1024
|