averoo commited on
Commit
515f4e8
·
verified ·
1 Parent(s): 47cfc49

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5929d74a21edc1c70e4f5319e230d9aa63eaca0be65cf4c7ee49c7092c0b9f51
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,1129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1000000
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: Акӑ ӗнтӗ Чакак кимӗ ҫине сикрӗ, Коля пӗр-икӗ хут шнуртан туртрӗ
12
+ те, мотор кӗрлесе те кайрӗ, унтан кимӗ утрав еннелле вӗҫтерчӗ.
13
+ sentences:
14
+ - Вот Сорока вскочил в лодку, Коля дернул за шнур, раз, другой, мотор затрещал,
15
+ и лодка понеслась к острову.
16
+ - Победа римского флота в гавани Эвносте.
17
+ - Повесть Бориса Горбатова о подвиге и героизме советских людей во время Великой
18
+ Отечественной войны.
19
+ - source_sentence: Ун патне пысӑках мар хырӑмлӑ, шурӑ сӑнлӑ, хӗрлӗ питлӗ, лутра ҫын
20
+ килсе кӗчӗ.
21
+ sentences:
22
+ - Антонов, Семён Михеевич
23
+ - Явился низенький человек, с умеренным брюшком, с белым лицом, румяными щеками
24
+ - Чёрно-белые фильмы СССР
25
+ - source_sentence: '3. Анчах Гаваон ҫыннисем, Иисус Иерихонпа Гай хулисене епле пӗтерсе
26
+ тӑкни ҫинчен илтсессӗн, 4. акӑ мӗнле чеелӗх тупнӑ: ашакӗсем ҫине ҫул валли кивӗ
27
+ михӗсемпе ҫӑкӑр янтӑласа хунӑ, ҫӗтӗлсе пӗтнӗ, саплӑклӑ тир хутаҫпа эрех илнӗ;
28
+ 5. ури сырри те вӗсен кивӗ, саплӑклӑ пулнӑ, ҫийӗнчи тумтирӗсем те ҫӗтӗк пулнӑ;
29
+ ҫул ҫине илнӗ ҫӑкӑрӗ те пӗтӗмпех типсе-кӑвакарса кайнӑскер, [тӗпренсе] пӗтнӗскер
30
+ пулнӑ.'
31
+ sentences:
32
+ - '3. Но жители Гаваона, услышав, что Иисус сделал с Иерихоном и Гаем, 4. употребили
33
+ хитрость: пошли, запаслись хлебом на дорогу и положили ветхие мешки на ослов своих
34
+ и ветхие, изорванные и заплатанные мехи вина; 5. и обувь на ногах их была ветхая
35
+ с заплатами, и одежда на них ветхая; и весь дорожный хлеб их был сухой и заплесневелый
36
+ [и раскрошенный].'
37
+ - «Черти бы их дули!..» — в отчаянии вскричал Щукарь и кинулся к цыганскому табору,
38
+ но, выскочив на пригорок, обнаружил, что ни шатров, ни кибиток возле речки уже
39
+ нет.
40
+ - 9. И сделаю над тобою то, чего Я никогда не делал и чему подобного впредь не буду
41
+ делать, за все твои мерзости.
42
+ - source_sentence: Эпӗ кӗпер айӗпе укҫасӑрах, ахалех вӗҫсе тухрӑм.
43
+ sentences:
44
+ - У меня в экипаже был механик — что называется, «палец в рот не клади».
45
+ - А я под мост даром слетал.
46
+ - Я пользовался этим и прогуливал школу, чтобы проводить время в компании более
47
+ старших ребят.
48
+ - source_sentence: Генри Джастис Форд
49
+ sentences:
50
+ - — Вижу, по одному делу? — спросила она, взглянув на Сашу и его приятелей.
51
+ - Я вышел из ванны свеж и бодр, как будто собирался на бал.
52
+ - Форд, Генри Джастис
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ ---
56
+
57
+ # SentenceTransformer based on sentence-transformers/LaBSE
58
+
59
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
60
+
61
+ ## Model Details
62
+
63
+ ### Model Description
64
+ - **Model Type:** Sentence Transformer
65
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
66
+ - **Maximum Sequence Length:** 256 tokens
67
+ - **Output Dimensionality:** 768 dimensions
68
+ - **Similarity Function:** Cosine Similarity
69
+ <!-- - **Training Dataset:** Unknown -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
76
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
77
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
78
+
79
+ ### Full Model Architecture
80
+
81
+ ```
82
+ SentenceTransformer(
83
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
84
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
85
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
86
+ (3): Normalize()
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Генри Джастис Форд',
109
+ 'Форд, Генри Джастис',
110
+ 'Я вышел из ванны свеж и бодр, как будто собирался на бал.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 768]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### Unnamed Dataset
163
+
164
+ * Size: 1,000,000 training samples
165
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
166
+ * Approximate statistics based on the first 1000 samples:
167
+ | | sentence_0 | sentence_1 | label |
168
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
169
+ | type | string | string | float |
170
+ | details | <ul><li>min: 3 tokens</li><li>mean: 21.82 tokens</li><li>max: 127 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.16 tokens</li><li>max: 136 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
171
+ * Samples:
172
+ | sentence_0 | sentence_1 | label |
173
+ |:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|:-----------------|
174
+ | <code>Темех мар.</code> | <code>Дело десятое.</code> | <code>1.0</code> |
175
+ | <code>Уругвайӑн тĕн ĕҫченĕсем</code> | <code>Религиозные деятели Уругвая</code> | <code>1.0</code> |
176
+ | <code>Эп аванах ас тӑватӑп, пилӗк ҫул каялла пахчана эпир лайӑх тасатнӑччӗ.</code> | <code>А пять лет тому назад я знал, что сад был чищен.</code> | <code>1.0</code> |
177
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
178
+ ```json
179
+ {
180
+ "scale": 20.0,
181
+ "similarity_fct": "cos_sim"
182
+ }
183
+ ```
184
+
185
+ ### Training Hyperparameters
186
+ #### Non-Default Hyperparameters
187
+
188
+ - `eval_strategy`: steps
189
+ - `per_device_train_batch_size`: 12
190
+ - `per_device_eval_batch_size`: 12
191
+ - `num_train_epochs`: 1
192
+ - `fp16`: True
193
+ - `multi_dataset_batch_sampler`: round_robin
194
+
195
+ #### All Hyperparameters
196
+ <details><summary>Click to expand</summary>
197
+
198
+ - `overwrite_output_dir`: False
199
+ - `do_predict`: False
200
+ - `eval_strategy`: steps
201
+ - `prediction_loss_only`: True
202
+ - `per_device_train_batch_size`: 12
203
+ - `per_device_eval_batch_size`: 12
204
+ - `per_gpu_train_batch_size`: None
205
+ - `per_gpu_eval_batch_size`: None
206
+ - `gradient_accumulation_steps`: 1
207
+ - `eval_accumulation_steps`: None
208
+ - `torch_empty_cache_steps`: None
209
+ - `learning_rate`: 5e-05
210
+ - `weight_decay`: 0.0
211
+ - `adam_beta1`: 0.9
212
+ - `adam_beta2`: 0.999
213
+ - `adam_epsilon`: 1e-08
214
+ - `max_grad_norm`: 1
215
+ - `num_train_epochs`: 1
216
+ - `max_steps`: -1
217
+ - `lr_scheduler_type`: linear
218
+ - `lr_scheduler_kwargs`: {}
219
+ - `warmup_ratio`: 0.0
220
+ - `warmup_steps`: 0
221
+ - `log_level`: passive
222
+ - `log_level_replica`: warning
223
+ - `log_on_each_node`: True
224
+ - `logging_nan_inf_filter`: True
225
+ - `save_safetensors`: True
226
+ - `save_on_each_node`: False
227
+ - `save_only_model`: False
228
+ - `restore_callback_states_from_checkpoint`: False
229
+ - `no_cuda`: False
230
+ - `use_cpu`: False
231
+ - `use_mps_device`: False
232
+ - `seed`: 42
233
+ - `data_seed`: None
234
+ - `jit_mode_eval`: False
235
+ - `use_ipex`: False
236
+ - `bf16`: False
237
+ - `fp16`: True
238
+ - `fp16_opt_level`: O1
239
+ - `half_precision_backend`: auto
240
+ - `bf16_full_eval`: False
241
+ - `fp16_full_eval`: False
242
+ - `tf32`: None
243
+ - `local_rank`: 0
244
+ - `ddp_backend`: None
245
+ - `tpu_num_cores`: None
246
+ - `tpu_metrics_debug`: False
247
+ - `debug`: []
248
+ - `dataloader_drop_last`: False
249
+ - `dataloader_num_workers`: 0
250
+ - `dataloader_prefetch_factor`: None
251
+ - `past_index`: -1
252
+ - `disable_tqdm`: False
253
+ - `remove_unused_columns`: True
254
+ - `label_names`: None
255
+ - `load_best_model_at_end`: False
256
+ - `ignore_data_skip`: False
257
+ - `fsdp`: []
258
+ - `fsdp_min_num_params`: 0
259
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
260
+ - `tp_size`: 0
261
+ - `fsdp_transformer_layer_cls_to_wrap`: None
262
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
263
+ - `deepspeed`: None
264
+ - `label_smoothing_factor`: 0.0
265
+ - `optim`: adamw_torch
266
+ - `optim_args`: None
267
+ - `adafactor`: False
268
+ - `group_by_length`: False
269
+ - `length_column_name`: length
270
+ - `ddp_find_unused_parameters`: None
271
+ - `ddp_bucket_cap_mb`: None
272
+ - `ddp_broadcast_buffers`: False
273
+ - `dataloader_pin_memory`: True
274
+ - `dataloader_persistent_workers`: False
275
+ - `skip_memory_metrics`: True
276
+ - `use_legacy_prediction_loop`: False
277
+ - `push_to_hub`: False
278
+ - `resume_from_checkpoint`: None
279
+ - `hub_model_id`: None
280
+ - `hub_strategy`: every_save
281
+ - `hub_private_repo`: None
282
+ - `hub_always_push`: False
283
+ - `gradient_checkpointing`: False
284
+ - `gradient_checkpointing_kwargs`: None
285
+ - `include_inputs_for_metrics`: False
286
+ - `include_for_metrics`: []
287
+ - `eval_do_concat_batches`: True
288
+ - `fp16_backend`: auto
289
+ - `push_to_hub_model_id`: None
290
+ - `push_to_hub_organization`: None
291
+ - `mp_parameters`:
292
+ - `auto_find_batch_size`: False
293
+ - `full_determinism`: False
294
+ - `torchdynamo`: None
295
+ - `ray_scope`: last
296
+ - `ddp_timeout`: 1800
297
+ - `torch_compile`: False
298
+ - `torch_compile_backend`: None
299
+ - `torch_compile_mode`: None
300
+ - `include_tokens_per_second`: False
301
+ - `include_num_input_tokens_seen`: False
302
+ - `neftune_noise_alpha`: None
303
+ - `optim_target_modules`: None
304
+ - `batch_eval_metrics`: False
305
+ - `eval_on_start`: False
306
+ - `use_liger_kernel`: False
307
+ - `eval_use_gather_object`: False
308
+ - `average_tokens_across_devices`: False
309
+ - `prompts`: None
310
+ - `batch_sampler`: batch_sampler
311
+ - `multi_dataset_batch_sampler`: round_robin
312
+
313
+ </details>
314
+
315
+ ### Training Logs
316
+ <details><summary>Click to expand</summary>
317
+
318
+ | Epoch | Step | Training Loss |
319
+ |:------:|:-----:|:-------------:|
320
+ | 0.0012 | 100 | - |
321
+ | 0.0024 | 200 | - |
322
+ | 0.0036 | 300 | - |
323
+ | 0.0048 | 400 | - |
324
+ | 0.0060 | 500 | 0.5331 |
325
+ | 0.0072 | 600 | - |
326
+ | 0.0084 | 700 | - |
327
+ | 0.0096 | 800 | - |
328
+ | 0.0108 | 900 | - |
329
+ | 0.0120 | 1000 | 0.3694 |
330
+ | 0.0132 | 1100 | - |
331
+ | 0.0144 | 1200 | - |
332
+ | 0.0156 | 1300 | - |
333
+ | 0.0168 | 1400 | - |
334
+ | 0.0180 | 1500 | 0.3141 |
335
+ | 0.0192 | 1600 | - |
336
+ | 0.0204 | 1700 | - |
337
+ | 0.0216 | 1800 | - |
338
+ | 0.0228 | 1900 | - |
339
+ | 0.0240 | 2000 | 0.2836 |
340
+ | 0.0252 | 2100 | - |
341
+ | 0.0264 | 2200 | - |
342
+ | 0.0276 | 2300 | - |
343
+ | 0.0288 | 2400 | - |
344
+ | 0.0300 | 2500 | 0.2823 |
345
+ | 0.0312 | 2600 | - |
346
+ | 0.0324 | 2700 | - |
347
+ | 0.0336 | 2800 | - |
348
+ | 0.0348 | 2900 | - |
349
+ | 0.0360 | 3000 | 0.265 |
350
+ | 0.0372 | 3100 | - |
351
+ | 0.0384 | 3200 | - |
352
+ | 0.0396 | 3300 | - |
353
+ | 0.0408 | 3400 | - |
354
+ | 0.0420 | 3500 | 0.2599 |
355
+ | 0.0432 | 3600 | - |
356
+ | 0.0444 | 3700 | - |
357
+ | 0.0456 | 3800 | - |
358
+ | 0.0468 | 3900 | - |
359
+ | 0.0480 | 4000 | 0.234 |
360
+ | 0.0492 | 4100 | - |
361
+ | 0.0504 | 4200 | - |
362
+ | 0.0516 | 4300 | - |
363
+ | 0.0528 | 4400 | - |
364
+ | 0.0540 | 4500 | 0.1966 |
365
+ | 0.0552 | 4600 | - |
366
+ | 0.0564 | 4700 | - |
367
+ | 0.0576 | 4800 | - |
368
+ | 0.0588 | 4900 | - |
369
+ | 0.0600 | 5000 | 0.2204 |
370
+ | 0.0612 | 5100 | - |
371
+ | 0.0624 | 5200 | - |
372
+ | 0.0636 | 5300 | - |
373
+ | 0.0648 | 5400 | - |
374
+ | 0.0660 | 5500 | 0.2272 |
375
+ | 0.0672 | 5600 | - |
376
+ | 0.0684 | 5700 | - |
377
+ | 0.0696 | 5800 | - |
378
+ | 0.0708 | 5900 | - |
379
+ | 0.0720 | 6000 | 0.2256 |
380
+ | 0.0732 | 6100 | - |
381
+ | 0.0744 | 6200 | - |
382
+ | 0.0756 | 6300 | - |
383
+ | 0.0768 | 6400 | - |
384
+ | 0.0780 | 6500 | 0.2071 |
385
+ | 0.0792 | 6600 | - |
386
+ | 0.0804 | 6700 | - |
387
+ | 0.0816 | 6800 | - |
388
+ | 0.0828 | 6900 | - |
389
+ | 0.0840 | 7000 | 0.2113 |
390
+ | 0.0852 | 7100 | - |
391
+ | 0.0864 | 7200 | - |
392
+ | 0.0876 | 7300 | - |
393
+ | 0.0888 | 7400 | - |
394
+ | 0.0900 | 7500 | 0.2222 |
395
+ | 0.0912 | 7600 | - |
396
+ | 0.0924 | 7700 | - |
397
+ | 0.0936 | 7800 | - |
398
+ | 0.0948 | 7900 | - |
399
+ | 0.0960 | 8000 | 0.2186 |
400
+ | 0.0972 | 8100 | - |
401
+ | 0.0984 | 8200 | - |
402
+ | 0.0996 | 8300 | - |
403
+ | 0.1008 | 8400 | - |
404
+ | 0.1020 | 8500 | 0.2137 |
405
+ | 0.1032 | 8600 | - |
406
+ | 0.1044 | 8700 | - |
407
+ | 0.1056 | 8800 | - |
408
+ | 0.1068 | 8900 | - |
409
+ | 0.1080 | 9000 | 0.1928 |
410
+ | 0.1092 | 9100 | - |
411
+ | 0.1104 | 9200 | - |
412
+ | 0.1116 | 9300 | - |
413
+ | 0.1128 | 9400 | - |
414
+ | 0.1140 | 9500 | 0.2117 |
415
+ | 0.1152 | 9600 | - |
416
+ | 0.1164 | 9700 | - |
417
+ | 0.1176 | 9800 | - |
418
+ | 0.1188 | 9900 | - |
419
+ | 0.1200 | 10000 | 0.1987 |
420
+ | 0.1212 | 10100 | - |
421
+ | 0.1224 | 10200 | - |
422
+ | 0.1236 | 10300 | - |
423
+ | 0.1248 | 10400 | - |
424
+ | 0.1260 | 10500 | 0.2011 |
425
+ | 0.1272 | 10600 | - |
426
+ | 0.1284 | 10700 | - |
427
+ | 0.1296 | 10800 | - |
428
+ | 0.1308 | 10900 | - |
429
+ | 0.1320 | 11000 | 0.1775 |
430
+ | 0.1332 | 11100 | - |
431
+ | 0.1344 | 11200 | - |
432
+ | 0.1356 | 11300 | - |
433
+ | 0.1368 | 11400 | - |
434
+ | 0.1380 | 11500 | 0.2048 |
435
+ | 0.1392 | 11600 | - |
436
+ | 0.1404 | 11700 | - |
437
+ | 0.1416 | 11800 | - |
438
+ | 0.1428 | 11900 | - |
439
+ | 0.1440 | 12000 | 0.2064 |
440
+ | 0.1452 | 12100 | - |
441
+ | 0.1464 | 12200 | - |
442
+ | 0.1476 | 12300 | - |
443
+ | 0.1488 | 12400 | - |
444
+ | 0.1500 | 12500 | 0.1883 |
445
+ | 0.1512 | 12600 | - |
446
+ | 0.1524 | 12700 | - |
447
+ | 0.1536 | 12800 | - |
448
+ | 0.1548 | 12900 | - |
449
+ | 0.1560 | 13000 | 0.2084 |
450
+ | 0.1572 | 13100 | - |
451
+ | 0.1584 | 13200 | - |
452
+ | 0.1596 | 13300 | - |
453
+ | 0.1608 | 13400 | - |
454
+ | 0.1620 | 13500 | 0.2077 |
455
+ | 0.1632 | 13600 | - |
456
+ | 0.1644 | 13700 | - |
457
+ | 0.1656 | 13800 | - |
458
+ | 0.1668 | 13900 | - |
459
+ | 0.1680 | 14000 | 0.1866 |
460
+ | 0.1692 | 14100 | - |
461
+ | 0.1704 | 14200 | - |
462
+ | 0.1716 | 14300 | - |
463
+ | 0.1728 | 14400 | - |
464
+ | 0.1740 | 14500 | 0.1859 |
465
+ | 0.1752 | 14600 | - |
466
+ | 0.1764 | 14700 | - |
467
+ | 0.1776 | 14800 | - |
468
+ | 0.1788 | 14900 | - |
469
+ | 0.1800 | 15000 | 0.1735 |
470
+ | 0.1812 | 15100 | - |
471
+ | 0.1824 | 15200 | - |
472
+ | 0.1836 | 15300 | - |
473
+ | 0.1848 | 15400 | - |
474
+ | 0.1860 | 15500 | 0.171 |
475
+ | 0.1872 | 15600 | - |
476
+ | 0.1884 | 15700 | - |
477
+ | 0.1896 | 15800 | - |
478
+ | 0.1908 | 15900 | - |
479
+ | 0.1920 | 16000 | 0.1465 |
480
+ | 0.1932 | 16100 | - |
481
+ | 0.1944 | 16200 | - |
482
+ | 0.1956 | 16300 | - |
483
+ | 0.1968 | 16400 | - |
484
+ | 0.1980 | 16500 | 0.1921 |
485
+ | 0.1992 | 16600 | - |
486
+ | 0.2004 | 16700 | - |
487
+ | 0.2016 | 16800 | - |
488
+ | 0.2028 | 16900 | - |
489
+ | 0.2040 | 17000 | 0.1669 |
490
+ | 0.2052 | 17100 | - |
491
+ | 0.2064 | 17200 | - |
492
+ | 0.2076 | 17300 | - |
493
+ | 0.2088 | 17400 | - |
494
+ | 0.2100 | 17500 | 0.1656 |
495
+ | 0.2112 | 17600 | - |
496
+ | 0.2124 | 17700 | - |
497
+ | 0.2136 | 17800 | - |
498
+ | 0.2148 | 17900 | - |
499
+ | 0.2160 | 18000 | 0.1952 |
500
+ | 0.2172 | 18100 | - |
501
+ | 0.2184 | 18200 | - |
502
+ | 0.2196 | 18300 | - |
503
+ | 0.2208 | 18400 | - |
504
+ | 0.2220 | 18500 | 0.1658 |
505
+ | 0.2232 | 18600 | - |
506
+ | 0.2244 | 18700 | - |
507
+ | 0.2256 | 18800 | - |
508
+ | 0.2268 | 18900 | - |
509
+ | 0.2280 | 19000 | 0.1774 |
510
+ | 0.2292 | 19100 | - |
511
+ | 0.2304 | 19200 | - |
512
+ | 0.2316 | 19300 | - |
513
+ | 0.2328 | 19400 | - |
514
+ | 0.2340 | 19500 | 0.1802 |
515
+ | 0.2352 | 19600 | - |
516
+ | 0.2364 | 19700 | - |
517
+ | 0.2376 | 19800 | - |
518
+ | 0.2388 | 19900 | - |
519
+ | 0.2400 | 20000 | 0.1724 |
520
+ | 0.2412 | 20100 | - |
521
+ | 0.2424 | 20200 | - |
522
+ | 0.2436 | 20300 | - |
523
+ | 0.2448 | 20400 | - |
524
+ | 0.2460 | 20500 | 0.1653 |
525
+ | 0.2472 | 20600 | - |
526
+ | 0.2484 | 20700 | - |
527
+ | 0.2496 | 20800 | - |
528
+ | 0.2508 | 20900 | - |
529
+ | 0.2520 | 21000 | 0.1484 |
530
+ | 0.2532 | 21100 | - |
531
+ | 0.2544 | 21200 | - |
532
+ | 0.2556 | 21300 | - |
533
+ | 0.2568 | 21400 | - |
534
+ | 0.2580 | 21500 | 0.1544 |
535
+ | 0.2592 | 21600 | - |
536
+ | 0.2604 | 21700 | - |
537
+ | 0.2616 | 21800 | - |
538
+ | 0.2628 | 21900 | - |
539
+ | 0.2640 | 22000 | 0.174 |
540
+ | 0.2652 | 22100 | - |
541
+ | 0.2664 | 22200 | - |
542
+ | 0.2676 | 22300 | - |
543
+ | 0.2688 | 22400 | - |
544
+ | 0.2700 | 22500 | 0.1488 |
545
+ | 0.2712 | 22600 | - |
546
+ | 0.2724 | 22700 | - |
547
+ | 0.2736 | 22800 | - |
548
+ | 0.2748 | 22900 | - |
549
+ | 0.2760 | 23000 | 0.1696 |
550
+ | 0.2772 | 23100 | - |
551
+ | 0.2784 | 23200 | - |
552
+ | 0.2796 | 23300 | - |
553
+ | 0.2808 | 23400 | - |
554
+ | 0.2820 | 23500 | 0.1468 |
555
+ | 0.2832 | 23600 | - |
556
+ | 0.2844 | 23700 | - |
557
+ | 0.2856 | 23800 | - |
558
+ | 0.2868 | 23900 | - |
559
+ | 0.2880 | 24000 | 0.1738 |
560
+ | 0.2892 | 24100 | - |
561
+ | 0.2904 | 24200 | - |
562
+ | 0.2916 | 24300 | - |
563
+ | 0.2928 | 24400 | - |
564
+ | 0.2940 | 24500 | 0.1667 |
565
+ | 0.2952 | 24600 | - |
566
+ | 0.2964 | 24700 | - |
567
+ | 0.2976 | 24800 | - |
568
+ | 0.2988 | 24900 | - |
569
+ | 0.3000 | 25000 | 0.1562 |
570
+ | 0.3012 | 25100 | - |
571
+ | 0.3024 | 25200 | - |
572
+ | 0.3036 | 25300 | - |
573
+ | 0.3048 | 25400 | - |
574
+ | 0.3060 | 25500 | 0.1628 |
575
+ | 0.3072 | 25600 | - |
576
+ | 0.3084 | 25700 | - |
577
+ | 0.3096 | 25800 | - |
578
+ | 0.3108 | 25900 | - |
579
+ | 0.3120 | 26000 | 0.1392 |
580
+ | 0.3132 | 26100 | - |
581
+ | 0.3144 | 26200 | - |
582
+ | 0.3156 | 26300 | - |
583
+ | 0.3168 | 26400 | - |
584
+ | 0.3180 | 26500 | 0.1507 |
585
+ | 0.3192 | 26600 | - |
586
+ | 0.3204 | 26700 | - |
587
+ | 0.3216 | 26800 | - |
588
+ | 0.3228 | 26900 | - |
589
+ | 0.3240 | 27000 | 0.1646 |
590
+ | 0.3252 | 27100 | - |
591
+ | 0.3264 | 27200 | - |
592
+ | 0.3276 | 27300 | - |
593
+ | 0.3288 | 27400 | - |
594
+ | 0.3300 | 27500 | 0.1433 |
595
+ | 0.3312 | 27600 | - |
596
+ | 0.3324 | 27700 | - |
597
+ | 0.3336 | 27800 | - |
598
+ | 0.3348 | 27900 | - |
599
+ | 0.3360 | 28000 | 0.1689 |
600
+ | 0.3372 | 28100 | - |
601
+ | 0.3384 | 28200 | - |
602
+ | 0.3396 | 28300 | - |
603
+ | 0.3408 | 28400 | - |
604
+ | 0.3420 | 28500 | 0.1432 |
605
+ | 0.3432 | 28600 | - |
606
+ | 0.3444 | 28700 | - |
607
+ | 0.3456 | 28800 | - |
608
+ | 0.3468 | 28900 | - |
609
+ | 0.3480 | 29000 | 0.1534 |
610
+ | 0.3492 | 29100 | - |
611
+ | 0.3504 | 29200 | - |
612
+ | 0.3516 | 29300 | - |
613
+ | 0.3528 | 29400 | - |
614
+ | 0.3540 | 29500 | 0.1487 |
615
+ | 0.3552 | 29600 | - |
616
+ | 0.3564 | 29700 | - |
617
+ | 0.3576 | 29800 | - |
618
+ | 0.3588 | 29900 | - |
619
+ | 0.3600 | 30000 | 0.1439 |
620
+ | 0.3612 | 30100 | - |
621
+ | 0.3624 | 30200 | - |
622
+ | 0.3636 | 30300 | - |
623
+ | 0.3648 | 30400 | - |
624
+ | 0.3660 | 30500 | 0.1397 |
625
+ | 0.3672 | 30600 | - |
626
+ | 0.3684 | 30700 | - |
627
+ | 0.3696 | 30800 | - |
628
+ | 0.3708 | 30900 | - |
629
+ | 0.3720 | 31000 | 0.1542 |
630
+ | 0.3732 | 31100 | - |
631
+ | 0.3744 | 31200 | - |
632
+ | 0.3756 | 31300 | - |
633
+ | 0.3768 | 31400 | - |
634
+ | 0.3780 | 31500 | 0.1448 |
635
+ | 0.3792 | 31600 | - |
636
+ | 0.3804 | 31700 | - |
637
+ | 0.3816 | 31800 | - |
638
+ | 0.3828 | 31900 | - |
639
+ | 0.3840 | 32000 | 0.1608 |
640
+ | 0.3852 | 32100 | - |
641
+ | 0.3864 | 32200 | - |
642
+ | 0.3876 | 32300 | - |
643
+ | 0.3888 | 32400 | - |
644
+ | 0.3900 | 32500 | 0.1486 |
645
+ | 0.3912 | 32600 | - |
646
+ | 0.3924 | 32700 | - |
647
+ | 0.3936 | 32800 | - |
648
+ | 0.3948 | 32900 | - |
649
+ | 0.3960 | 33000 | 0.1274 |
650
+ | 0.3972 | 33100 | - |
651
+ | 0.3984 | 33200 | - |
652
+ | 0.3996 | 33300 | - |
653
+ | 0.4008 | 33400 | - |
654
+ | 0.4020 | 33500 | 0.1451 |
655
+ | 0.4032 | 33600 | - |
656
+ | 0.4044 | 33700 | - |
657
+ | 0.4056 | 33800 | - |
658
+ | 0.4068 | 33900 | - |
659
+ | 0.4080 | 34000 | 0.1316 |
660
+ | 0.4092 | 34100 | - |
661
+ | 0.4104 | 34200 | - |
662
+ | 0.4116 | 34300 | - |
663
+ | 0.4128 | 34400 | - |
664
+ | 0.4140 | 34500 | 0.1306 |
665
+ | 0.4152 | 34600 | - |
666
+ | 0.4164 | 34700 | - |
667
+ | 0.4176 | 34800 | - |
668
+ | 0.4188 | 34900 | - |
669
+ | 0.4200 | 35000 | 0.1382 |
670
+ | 0.4212 | 35100 | - |
671
+ | 0.4224 | 35200 | - |
672
+ | 0.4236 | 35300 | - |
673
+ | 0.4248 | 35400 | - |
674
+ | 0.4260 | 35500 | 0.1322 |
675
+ | 0.4272 | 35600 | - |
676
+ | 0.4284 | 35700 | - |
677
+ | 0.4296 | 35800 | - |
678
+ | 0.4308 | 35900 | - |
679
+ | 0.4320 | 36000 | 0.1617 |
680
+ | 0.4332 | 36100 | - |
681
+ | 0.4344 | 36200 | - |
682
+ | 0.4356 | 36300 | - |
683
+ | 0.4368 | 36400 | - |
684
+ | 0.4380 | 36500 | 0.14 |
685
+ | 0.4392 | 36600 | - |
686
+ | 0.4404 | 36700 | - |
687
+ | 0.4416 | 36800 | - |
688
+ | 0.4428 | 36900 | - |
689
+ | 0.4440 | 37000 | 0.1321 |
690
+ | 0.4452 | 37100 | - |
691
+ | 0.4464 | 37200 | - |
692
+ | 0.4476 | 37300 | - |
693
+ | 0.4488 | 37400 | - |
694
+ | 0.4500 | 37500 | 0.1464 |
695
+ | 0.4512 | 37600 | - |
696
+ | 0.4524 | 37700 | - |
697
+ | 0.4536 | 37800 | - |
698
+ | 0.4548 | 37900 | - |
699
+ | 0.4560 | 38000 | 0.1236 |
700
+ | 0.4572 | 38100 | - |
701
+ | 0.4584 | 38200 | - |
702
+ | 0.4596 | 38300 | - |
703
+ | 0.4608 | 38400 | - |
704
+ | 0.4620 | 38500 | 0.147 |
705
+ | 0.4632 | 38600 | - |
706
+ | 0.4644 | 38700 | - |
707
+ | 0.4656 | 38800 | - |
708
+ | 0.4668 | 38900 | - |
709
+ | 0.4680 | 39000 | 0.1376 |
710
+ | 0.4692 | 39100 | - |
711
+ | 0.4704 | 39200 | - |
712
+ | 0.4716 | 39300 | - |
713
+ | 0.4728 | 39400 | - |
714
+ | 0.4740 | 39500 | 0.1342 |
715
+ | 0.4752 | 39600 | - |
716
+ | 0.4764 | 39700 | - |
717
+ | 0.4776 | 39800 | - |
718
+ | 0.4788 | 39900 | - |
719
+ | 0.4800 | 40000 | 0.123 |
720
+ | 0.4812 | 40100 | - |
721
+ | 0.4824 | 40200 | - |
722
+ | 0.4836 | 40300 | - |
723
+ | 0.4848 | 40400 | - |
724
+ | 0.4860 | 40500 | 0.1312 |
725
+ | 0.4872 | 40600 | - |
726
+ | 0.4884 | 40700 | - |
727
+ | 0.4896 | 40800 | - |
728
+ | 0.4908 | 40900 | - |
729
+ | 0.4920 | 41000 | 0.1325 |
730
+ | 0.4932 | 41100 | - |
731
+ | 0.4944 | 41200 | - |
732
+ | 0.4956 | 41300 | - |
733
+ | 0.4968 | 41400 | - |
734
+ | 0.4980 | 41500 | 0.1203 |
735
+ | 0.4992 | 41600 | - |
736
+ | 0.5004 | 41700 | - |
737
+ | 0.5016 | 41800 | - |
738
+ | 0.5028 | 41900 | - |
739
+ | 0.5040 | 42000 | 0.1258 |
740
+ | 0.5052 | 42100 | - |
741
+ | 0.5064 | 42200 | - |
742
+ | 0.5076 | 42300 | - |
743
+ | 0.5088 | 42400 | - |
744
+ | 0.5100 | 42500 | 0.141 |
745
+ | 0.5112 | 42600 | - |
746
+ | 0.5124 | 42700 | - |
747
+ | 0.5136 | 42800 | - |
748
+ | 0.5148 | 42900 | - |
749
+ | 0.5160 | 43000 | 0.1473 |
750
+ | 0.5172 | 43100 | - |
751
+ | 0.5184 | 43200 | - |
752
+ | 0.5196 | 43300 | - |
753
+ | 0.5208 | 43400 | - |
754
+ | 0.5220 | 43500 | 0.1247 |
755
+ | 0.5232 | 43600 | - |
756
+ | 0.5244 | 43700 | - |
757
+ | 0.5256 | 43800 | - |
758
+ | 0.5268 | 43900 | - |
759
+ | 0.5280 | 44000 | 0.1259 |
760
+ | 0.5292 | 44100 | - |
761
+ | 0.5304 | 44200 | - |
762
+ | 0.5316 | 44300 | - |
763
+ | 0.5328 | 44400 | - |
764
+ | 0.5340 | 44500 | 0.1372 |
765
+ | 0.5352 | 44600 | - |
766
+ | 0.5364 | 44700 | - |
767
+ | 0.5376 | 44800 | - |
768
+ | 0.5388 | 44900 | - |
769
+ | 0.5400 | 45000 | 0.1413 |
770
+ | 0.5412 | 45100 | - |
771
+ | 0.5424 | 45200 | - |
772
+ | 0.5436 | 45300 | - |
773
+ | 0.5448 | 45400 | - |
774
+ | 0.5460 | 45500 | 0.1157 |
775
+ | 0.5472 | 45600 | - |
776
+ | 0.5484 | 45700 | - |
777
+ | 0.5496 | 45800 | - |
778
+ | 0.5508 | 45900 | - |
779
+ | 0.5520 | 46000 | 0.127 |
780
+ | 0.5532 | 46100 | - |
781
+ | 0.5544 | 46200 | - |
782
+ | 0.5556 | 46300 | - |
783
+ | 0.5568 | 46400 | - |
784
+ | 0.5580 | 46500 | 0.1202 |
785
+ | 0.5592 | 46600 | - |
786
+ | 0.5604 | 46700 | - |
787
+ | 0.5616 | 46800 | - |
788
+ | 0.5628 | 46900 | - |
789
+ | 0.5640 | 47000 | 0.1199 |
790
+ | 0.5652 | 47100 | - |
791
+ | 0.5664 | 47200 | - |
792
+ | 0.5676 | 47300 | - |
793
+ | 0.5688 | 47400 | - |
794
+ | 0.5700 | 47500 | 0.1309 |
795
+ | 0.5712 | 47600 | - |
796
+ | 0.5724 | 47700 | - |
797
+ | 0.5736 | 47800 | - |
798
+ | 0.5748 | 47900 | - |
799
+ | 0.5760 | 48000 | 0.1276 |
800
+ | 0.5772 | 48100 | - |
801
+ | 0.5784 | 48200 | - |
802
+ | 0.5796 | 48300 | - |
803
+ | 0.5808 | 48400 | - |
804
+ | 0.5820 | 48500 | 0.1278 |
805
+ | 0.5832 | 48600 | - |
806
+ | 0.5844 | 48700 | - |
807
+ | 0.5856 | 48800 | - |
808
+ | 0.5868 | 48900 | - |
809
+ | 0.5880 | 49000 | 0.1175 |
810
+ | 0.5892 | 49100 | - |
811
+ | 0.5904 | 49200 | - |
812
+ | 0.5916 | 49300 | - |
813
+ | 0.5928 | 49400 | - |
814
+ | 0.5940 | 49500 | 0.1327 |
815
+ | 0.5952 | 49600 | - |
816
+ | 0.5964 | 49700 | - |
817
+ | 0.5976 | 49800 | - |
818
+ | 0.5988 | 49900 | - |
819
+ | 0.6000 | 50000 | 0.1109 |
820
+ | 0.6012 | 50100 | - |
821
+ | 0.6024 | 50200 | - |
822
+ | 0.6036 | 50300 | - |
823
+ | 0.6048 | 50400 | - |
824
+ | 0.6060 | 50500 | 0.1248 |
825
+ | 0.6072 | 50600 | - |
826
+ | 0.6084 | 50700 | - |
827
+ | 0.6096 | 50800 | - |
828
+ | 0.6108 | 50900 | - |
829
+ | 0.6120 | 51000 | 0.1296 |
830
+ | 0.6132 | 51100 | - |
831
+ | 0.6144 | 51200 | - |
832
+ | 0.6156 | 51300 | - |
833
+ | 0.6168 | 51400 | - |
834
+ | 0.6180 | 51500 | 0.1323 |
835
+ | 0.6192 | 51600 | - |
836
+ | 0.6204 | 51700 | - |
837
+ | 0.6216 | 51800 | - |
838
+ | 0.6228 | 51900 | - |
839
+ | 0.6240 | 52000 | 0.1155 |
840
+ | 0.6252 | 52100 | - |
841
+ | 0.6264 | 52200 | - |
842
+ | 0.6276 | 52300 | - |
843
+ | 0.6288 | 52400 | - |
844
+ | 0.6300 | 52500 | 0.1245 |
845
+ | 0.6312 | 52600 | - |
846
+ | 0.6324 | 52700 | - |
847
+ | 0.6336 | 52800 | - |
848
+ | 0.6348 | 52900 | - |
849
+ | 0.6360 | 53000 | 0.1238 |
850
+ | 0.6372 | 53100 | - |
851
+ | 0.6384 | 53200 | - |
852
+ | 0.6396 | 53300 | - |
853
+ | 0.6408 | 53400 | - |
854
+ | 0.6420 | 53500 | 0.12 |
855
+ | 0.6432 | 53600 | - |
856
+ | 0.6444 | 53700 | - |
857
+ | 0.6456 | 53800 | - |
858
+ | 0.6468 | 53900 | - |
859
+ | 0.6480 | 54000 | 0.1116 |
860
+ | 0.6492 | 54100 | - |
861
+ | 0.6504 | 54200 | - |
862
+ | 0.6516 | 54300 | - |
863
+ | 0.6528 | 54400 | - |
864
+ | 0.6540 | 54500 | 0.1305 |
865
+ | 0.6552 | 54600 | - |
866
+ | 0.6564 | 54700 | - |
867
+ | 0.6576 | 54800 | - |
868
+ | 0.6588 | 54900 | - |
869
+ | 0.6600 | 55000 | 0.1355 |
870
+ | 0.6612 | 55100 | - |
871
+ | 0.6624 | 55200 | - |
872
+ | 0.6636 | 55300 | - |
873
+ | 0.6648 | 55400 | - |
874
+ | 0.6660 | 55500 | 0.1139 |
875
+ | 0.6672 | 55600 | - |
876
+ | 0.6684 | 55700 | - |
877
+ | 0.6696 | 55800 | - |
878
+ | 0.6708 | 55900 | - |
879
+ | 0.6720 | 56000 | 0.1251 |
880
+ | 0.6732 | 56100 | - |
881
+ | 0.6744 | 56200 | - |
882
+ | 0.6756 | 56300 | - |
883
+ | 0.6768 | 56400 | - |
884
+ | 0.6780 | 56500 | 0.1211 |
885
+ | 0.6792 | 56600 | - |
886
+ | 0.6804 | 56700 | - |
887
+ | 0.6816 | 56800 | - |
888
+ | 0.6828 | 56900 | - |
889
+ | 0.6840 | 57000 | 0.1123 |
890
+ | 0.6852 | 57100 | - |
891
+ | 0.6864 | 57200 | - |
892
+ | 0.6876 | 57300 | - |
893
+ | 0.6888 | 57400 | - |
894
+ | 0.6900 | 57500 | 0.1071 |
895
+ | 0.6912 | 57600 | - |
896
+ | 0.6924 | 57700 | - |
897
+ | 0.6936 | 57800 | - |
898
+ | 0.6948 | 57900 | - |
899
+ | 0.6960 | 58000 | 0.112 |
900
+ | 0.6972 | 58100 | - |
901
+ | 0.6984 | 58200 | - |
902
+ | 0.6996 | 58300 | - |
903
+ | 0.7008 | 58400 | - |
904
+ | 0.7020 | 58500 | 0.1038 |
905
+ | 0.7032 | 58600 | - |
906
+ | 0.7044 | 58700 | - |
907
+ | 0.7056 | 58800 | - |
908
+ | 0.7068 | 58900 | - |
909
+ | 0.7080 | 59000 | 0.1238 |
910
+ | 0.7092 | 59100 | - |
911
+ | 0.7104 | 59200 | - |
912
+ | 0.7116 | 59300 | - |
913
+ | 0.7128 | 59400 | - |
914
+ | 0.7140 | 59500 | 0.1001 |
915
+ | 0.7152 | 59600 | - |
916
+ | 0.7164 | 59700 | - |
917
+ | 0.7176 | 59800 | - |
918
+ | 0.7188 | 59900 | - |
919
+ | 0.7200 | 60000 | 0.0948 |
920
+ | 0.7212 | 60100 | - |
921
+ | 0.7224 | 60200 | - |
922
+ | 0.7236 | 60300 | - |
923
+ | 0.7248 | 60400 | - |
924
+ | 0.7260 | 60500 | 0.1271 |
925
+ | 0.7272 | 60600 | - |
926
+ | 0.7284 | 60700 | - |
927
+ | 0.7296 | 60800 | - |
928
+ | 0.7308 | 60900 | - |
929
+ | 0.7320 | 61000 | 0.1117 |
930
+ | 0.7332 | 61100 | - |
931
+ | 0.7344 | 61200 | - |
932
+ | 0.7356 | 61300 | - |
933
+ | 0.7368 | 61400 | - |
934
+ | 0.7380 | 61500 | 0.1122 |
935
+ | 0.7392 | 61600 | - |
936
+ | 0.7404 | 61700 | - |
937
+ | 0.7416 | 61800 | - |
938
+ | 0.7428 | 61900 | - |
939
+ | 0.7440 | 62000 | 0.0972 |
940
+ | 0.7452 | 62100 | - |
941
+ | 0.7464 | 62200 | - |
942
+ | 0.7476 | 62300 | - |
943
+ | 0.7488 | 62400 | - |
944
+ | 0.7500 | 62500 | 0.1135 |
945
+ | 0.7512 | 62600 | - |
946
+ | 0.7524 | 62700 | - |
947
+ | 0.7536 | 62800 | - |
948
+ | 0.7548 | 62900 | - |
949
+ | 0.7560 | 63000 | 0.1092 |
950
+ | 0.7572 | 63100 | - |
951
+ | 0.7584 | 63200 | - |
952
+ | 0.7596 | 63300 | - |
953
+ | 0.7608 | 63400 | - |
954
+ | 0.7620 | 63500 | 0.1155 |
955
+ | 0.7632 | 63600 | - |
956
+ | 0.7644 | 63700 | - |
957
+ | 0.7656 | 63800 | - |
958
+ | 0.7668 | 63900 | - |
959
+ | 0.7680 | 64000 | 0.1065 |
960
+ | 0.7692 | 64100 | - |
961
+ | 0.7704 | 64200 | - |
962
+ | 0.7716 | 64300 | - |
963
+ | 0.7728 | 64400 | - |
964
+ | 0.7740 | 64500 | 0.1211 |
965
+ | 0.7752 | 64600 | - |
966
+ | 0.7764 | 64700 | - |
967
+ | 0.7776 | 64800 | - |
968
+ | 0.7788 | 64900 | - |
969
+ | 0.7800 | 65000 | 0.116 |
970
+ | 0.7812 | 65100 | - |
971
+ | 0.7824 | 65200 | - |
972
+ | 0.7836 | 65300 | - |
973
+ | 0.7848 | 65400 | - |
974
+ | 0.7860 | 65500 | 0.1138 |
975
+ | 0.7872 | 65600 | - |
976
+ | 0.7884 | 65700 | - |
977
+ | 0.7896 | 65800 | - |
978
+ | 0.7908 | 65900 | - |
979
+ | 0.7920 | 66000 | 0.1155 |
980
+ | 0.7932 | 66100 | - |
981
+ | 0.7944 | 66200 | - |
982
+ | 0.7956 | 66300 | - |
983
+ | 0.7968 | 66400 | - |
984
+ | 0.7980 | 66500 | 0.1059 |
985
+ | 0.7992 | 66600 | - |
986
+ | 0.8004 | 66700 | - |
987
+ | 0.8016 | 66800 | - |
988
+ | 0.8028 | 66900 | - |
989
+ | 0.8040 | 67000 | 0.1189 |
990
+ | 0.8052 | 67100 | - |
991
+ | 0.8064 | 67200 | - |
992
+ | 0.8076 | 67300 | - |
993
+ | 0.8088 | 67400 | - |
994
+ | 0.8100 | 67500 | 0.1089 |
995
+ | 0.8112 | 67600 | - |
996
+ | 0.8124 | 67700 | - |
997
+ | 0.8136 | 67800 | - |
998
+ | 0.8148 | 67900 | - |
999
+ | 0.8160 | 68000 | 0.1016 |
1000
+ | 0.8172 | 68100 | - |
1001
+ | 0.8184 | 68200 | - |
1002
+ | 0.8196 | 68300 | - |
1003
+ | 0.8208 | 68400 | - |
1004
+ | 0.8220 | 68500 | 0.121 |
1005
+ | 0.8232 | 68600 | - |
1006
+ | 0.8244 | 68700 | - |
1007
+ | 0.8256 | 68800 | - |
1008
+ | 0.8268 | 68900 | - |
1009
+ | 0.8280 | 69000 | 0.1185 |
1010
+ | 0.8292 | 69100 | - |
1011
+ | 0.8304 | 69200 | - |
1012
+ | 0.8316 | 69300 | - |
1013
+ | 0.8328 | 69400 | - |
1014
+ | 0.8340 | 69500 | 0.1026 |
1015
+ | 0.8352 | 69600 | - |
1016
+ | 0.8364 | 69700 | - |
1017
+ | 0.8376 | 69800 | - |
1018
+ | 0.8388 | 69900 | - |
1019
+ | 0.8400 | 70000 | 0.1209 |
1020
+ | 0.8412 | 70100 | - |
1021
+ | 0.8424 | 70200 | - |
1022
+ | 0.8436 | 70300 | - |
1023
+ | 0.8448 | 70400 | - |
1024
+ | 0.8460 | 70500 | 0.1103 |
1025
+ | 0.8472 | 70600 | - |
1026
+ | 0.8484 | 70700 | - |
1027
+ | 0.8496 | 70800 | - |
1028
+ | 0.8508 | 70900 | - |
1029
+ | 0.8520 | 71000 | 0.1098 |
1030
+ | 0.8532 | 71100 | - |
1031
+ | 0.8544 | 71200 | - |
1032
+ | 0.8556 | 71300 | - |
1033
+ | 0.8568 | 71400 | - |
1034
+ | 0.8580 | 71500 | 0.1055 |
1035
+ | 0.8592 | 71600 | - |
1036
+ | 0.8604 | 71700 | - |
1037
+ | 0.8616 | 71800 | - |
1038
+ | 0.8628 | 71900 | - |
1039
+ | 0.8640 | 72000 | 0.1045 |
1040
+ | 0.8652 | 72100 | - |
1041
+ | 0.8664 | 72200 | - |
1042
+ | 0.8676 | 72300 | - |
1043
+ | 0.8688 | 72400 | - |
1044
+ | 0.8700 | 72500 | 0.1126 |
1045
+ | 0.8712 | 72600 | - |
1046
+ | 0.8724 | 72700 | - |
1047
+ | 0.8736 | 72800 | - |
1048
+ | 0.8748 | 72900 | - |
1049
+ | 0.8760 | 73000 | 0.1058 |
1050
+ | 0.8772 | 73100 | - |
1051
+ | 0.8784 | 73200 | - |
1052
+ | 0.8796 | 73300 | - |
1053
+ | 0.8808 | 73400 | - |
1054
+ | 0.8820 | 73500 | 0.1138 |
1055
+ | 0.8832 | 73600 | - |
1056
+ | 0.8844 | 73700 | - |
1057
+ | 0.8856 | 73800 | - |
1058
+ | 0.8868 | 73900 | - |
1059
+ | 0.8880 | 74000 | 0.1071 |
1060
+ | 0.8892 | 74100 | - |
1061
+ | 0.8904 | 74200 | - |
1062
+ | 0.8916 | 74300 | - |
1063
+ | 0.8928 | 74400 | - |
1064
+ | 0.8940 | 74500 | 0.1091 |
1065
+ | 0.8952 | 74600 | - |
1066
+ | 0.8964 | 74700 | - |
1067
+ | 0.8976 | 74800 | - |
1068
+ | 0.8988 | 74900 | - |
1069
+ | 0.9000 | 75000 | 0.1143 |
1070
+ | 0.9012 | 75100 | - |
1071
+ | 0.9024 | 75200 | - |
1072
+
1073
+ </details>
1074
+
1075
+ ### Framework Versions
1076
+ - Python: 3.12.10
1077
+ - Sentence Transformers: 4.1.0
1078
+ - Transformers: 4.51.3
1079
+ - PyTorch: 2.6.0+cu124
1080
+ - Accelerate: 1.8.1
1081
+ - Datasets: 3.6.0
1082
+ - Tokenizers: 0.21.1
1083
+
1084
+ ## Citation
1085
+
1086
+ ### BibTeX
1087
+
1088
+ #### Sentence Transformers
1089
+ ```bibtex
1090
+ @inproceedings{reimers-2019-sentence-bert,
1091
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1092
+ author = "Reimers, Nils and Gurevych, Iryna",
1093
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1094
+ month = "11",
1095
+ year = "2019",
1096
+ publisher = "Association for Computational Linguistics",
1097
+ url = "https://arxiv.org/abs/1908.10084",
1098
+ }
1099
+ ```
1100
+
1101
+ #### MultipleNegativesRankingLoss
1102
+ ```bibtex
1103
+ @misc{henderson2017efficient,
1104
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1105
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1106
+ year={2017},
1107
+ eprint={1705.00652},
1108
+ archivePrefix={arXiv},
1109
+ primaryClass={cs.CL}
1110
+ }
1111
+ ```
1112
+
1113
+ <!--
1114
+ ## Glossary
1115
+
1116
+ *Clearly define terms in order to be accessible across audiences.*
1117
+ -->
1118
+
1119
+ <!--
1120
+ ## Model Card Authors
1121
+
1122
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1123
+ -->
1124
+
1125
+ <!--
1126
+ ## Model Card Contact
1127
+
1128
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1129
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.51.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 501153
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215a4e2edc994b0f8f664933498def03d92e377f6f4468791a7f18e951cc1fb1
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff