Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +1129 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +26 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +3 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5929d74a21edc1c70e4f5319e230d9aa63eaca0be65cf4c7ee49c7092c0b9f51
|
3 |
+
size 2362528
|
README.md
ADDED
@@ -0,0 +1,1129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:1000000
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: sentence-transformers/LaBSE
|
10 |
+
widget:
|
11 |
+
- source_sentence: Акӑ ӗнтӗ Чакак кимӗ ҫине сикрӗ, Коля пӗр-икӗ хут шнуртан туртрӗ
|
12 |
+
те, мотор кӗрлесе те кайрӗ, унтан кимӗ утрав еннелле вӗҫтерчӗ.
|
13 |
+
sentences:
|
14 |
+
- Вот Сорока вскочил в лодку, Коля дернул за шнур, раз, другой, мотор затрещал,
|
15 |
+
и лодка понеслась к острову.
|
16 |
+
- Победа римского флота в гавани Эвносте.
|
17 |
+
- Повесть Бориса Горбатова о подвиге и героизме советских людей во время Великой
|
18 |
+
Отечественной войны.
|
19 |
+
- source_sentence: Ун патне пысӑках мар хырӑмлӑ, шурӑ сӑнлӑ, хӗрлӗ питлӗ, лутра ҫын
|
20 |
+
килсе кӗчӗ.
|
21 |
+
sentences:
|
22 |
+
- Антонов, Семён Михеевич
|
23 |
+
- Явился низенький человек, с умеренным брюшком, с белым лицом, румяными щеками
|
24 |
+
- Чёрно-белые фильмы СССР
|
25 |
+
- source_sentence: '3. Анчах Гаваон ҫыннисем, Иисус Иерихонпа Гай хулисене епле пӗтерсе
|
26 |
+
тӑкни ҫинчен илтсессӗн, 4. акӑ мӗнле чеелӗх тупнӑ: ашакӗсем ҫине ҫул валли кивӗ
|
27 |
+
михӗсемпе ҫӑкӑр янтӑласа хунӑ, ҫӗтӗлсе пӗтнӗ, саплӑклӑ тир хутаҫпа эрех илнӗ;
|
28 |
+
5. ури сырри те вӗсен кивӗ, саплӑклӑ пулнӑ, ҫийӗнчи тумтирӗсем те ҫӗтӗк пулнӑ;
|
29 |
+
ҫул ҫине илнӗ ҫӑкӑрӗ те пӗтӗмпех типсе-кӑвакарса кайнӑскер, [тӗпренсе] пӗтнӗскер
|
30 |
+
пулнӑ.'
|
31 |
+
sentences:
|
32 |
+
- '3. Но жители Гаваона, услышав, что Иисус сделал с Иерихоном и Гаем, 4. употребили
|
33 |
+
хитрость: пошли, запаслись хлебом на дорогу и положили ветхие мешки на ослов своих
|
34 |
+
и ветхие, изорванные и заплатанные мехи вина; 5. и обувь на ногах их была ветхая
|
35 |
+
с заплатами, и одежда на них ветхая; и весь дорожный хлеб их был сухой и заплесневелый
|
36 |
+
[и раскрошенный].'
|
37 |
+
- «Черти бы их дули!..» — в отчаянии вскричал Щукарь и кинулся к цыганскому табору,
|
38 |
+
но, выскочив на пригорок, обнаружил, что ни шатров, ни кибиток возле речки уже
|
39 |
+
нет.
|
40 |
+
- 9. И сделаю над тобою то, чего Я никогда не делал и чему подобного впредь не буду
|
41 |
+
делать, за все твои мерзости.
|
42 |
+
- source_sentence: Эпӗ кӗпер айӗпе укҫасӑрах, ахалех вӗҫсе тухрӑм.
|
43 |
+
sentences:
|
44 |
+
- У меня в экипаже был механик — что называется, «палец в рот не клади».
|
45 |
+
- А я под мост даром слетал.
|
46 |
+
- Я пользовался этим и прогуливал школу, чтобы проводить время в компании более
|
47 |
+
старших ребят.
|
48 |
+
- source_sentence: Генри Джастис Форд
|
49 |
+
sentences:
|
50 |
+
- — Вижу, по одному делу? — спросила она, взглянув на Сашу и его приятелей.
|
51 |
+
- Я вышел из ванны свеж и бодр, как будто собирался на бал.
|
52 |
+
- Форд, Генри Джастис
|
53 |
+
pipeline_tag: sentence-similarity
|
54 |
+
library_name: sentence-transformers
|
55 |
+
---
|
56 |
+
|
57 |
+
# SentenceTransformer based on sentence-transformers/LaBSE
|
58 |
+
|
59 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
60 |
+
|
61 |
+
## Model Details
|
62 |
+
|
63 |
+
### Model Description
|
64 |
+
- **Model Type:** Sentence Transformer
|
65 |
+
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
|
66 |
+
- **Maximum Sequence Length:** 256 tokens
|
67 |
+
- **Output Dimensionality:** 768 dimensions
|
68 |
+
- **Similarity Function:** Cosine Similarity
|
69 |
+
<!-- - **Training Dataset:** Unknown -->
|
70 |
+
<!-- - **Language:** Unknown -->
|
71 |
+
<!-- - **License:** Unknown -->
|
72 |
+
|
73 |
+
### Model Sources
|
74 |
+
|
75 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
76 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
77 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
78 |
+
|
79 |
+
### Full Model Architecture
|
80 |
+
|
81 |
+
```
|
82 |
+
SentenceTransformer(
|
83 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
84 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
85 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
86 |
+
(3): Normalize()
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Usage
|
91 |
+
|
92 |
+
### Direct Usage (Sentence Transformers)
|
93 |
+
|
94 |
+
First install the Sentence Transformers library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install -U sentence-transformers
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
```python
|
102 |
+
from sentence_transformers import SentenceTransformer
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
106 |
+
# Run inference
|
107 |
+
sentences = [
|
108 |
+
'Генри Джастис Форд',
|
109 |
+
'Форд, Генри Джастис',
|
110 |
+
'Я вышел из ванны свеж и бодр, как будто собирался на бал.',
|
111 |
+
]
|
112 |
+
embeddings = model.encode(sentences)
|
113 |
+
print(embeddings.shape)
|
114 |
+
# [3, 768]
|
115 |
+
|
116 |
+
# Get the similarity scores for the embeddings
|
117 |
+
similarities = model.similarity(embeddings, embeddings)
|
118 |
+
print(similarities.shape)
|
119 |
+
# [3, 3]
|
120 |
+
```
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Direct Usage (Transformers)
|
124 |
+
|
125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
You can finetune this model on your own dataset.
|
134 |
+
|
135 |
+
<details><summary>Click to expand</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Out-of-Scope Use
|
142 |
+
|
143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
## Bias, Risks and Limitations
|
148 |
+
|
149 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Recommendations
|
154 |
+
|
155 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
## Training Details
|
159 |
+
|
160 |
+
### Training Dataset
|
161 |
+
|
162 |
+
#### Unnamed Dataset
|
163 |
+
|
164 |
+
* Size: 1,000,000 training samples
|
165 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
166 |
+
* Approximate statistics based on the first 1000 samples:
|
167 |
+
| | sentence_0 | sentence_1 | label |
|
168 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
169 |
+
| type | string | string | float |
|
170 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 21.82 tokens</li><li>max: 127 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.16 tokens</li><li>max: 136 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
171 |
+
* Samples:
|
172 |
+
| sentence_0 | sentence_1 | label |
|
173 |
+
|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|:-----------------|
|
174 |
+
| <code>Темех мар.</code> | <code>Дело десятое.</code> | <code>1.0</code> |
|
175 |
+
| <code>Уругвайӑн тĕн ĕҫченĕсем</code> | <code>Религиозные деятели Уругвая</code> | <code>1.0</code> |
|
176 |
+
| <code>Эп аванах ас тӑватӑп, пилӗк ҫул каялла пахчана эпир лайӑх тасатнӑччӗ.</code> | <code>А пять лет тому назад я знал, что сад был чищен.</code> | <code>1.0</code> |
|
177 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
178 |
+
```json
|
179 |
+
{
|
180 |
+
"scale": 20.0,
|
181 |
+
"similarity_fct": "cos_sim"
|
182 |
+
}
|
183 |
+
```
|
184 |
+
|
185 |
+
### Training Hyperparameters
|
186 |
+
#### Non-Default Hyperparameters
|
187 |
+
|
188 |
+
- `eval_strategy`: steps
|
189 |
+
- `per_device_train_batch_size`: 12
|
190 |
+
- `per_device_eval_batch_size`: 12
|
191 |
+
- `num_train_epochs`: 1
|
192 |
+
- `fp16`: True
|
193 |
+
- `multi_dataset_batch_sampler`: round_robin
|
194 |
+
|
195 |
+
#### All Hyperparameters
|
196 |
+
<details><summary>Click to expand</summary>
|
197 |
+
|
198 |
+
- `overwrite_output_dir`: False
|
199 |
+
- `do_predict`: False
|
200 |
+
- `eval_strategy`: steps
|
201 |
+
- `prediction_loss_only`: True
|
202 |
+
- `per_device_train_batch_size`: 12
|
203 |
+
- `per_device_eval_batch_size`: 12
|
204 |
+
- `per_gpu_train_batch_size`: None
|
205 |
+
- `per_gpu_eval_batch_size`: None
|
206 |
+
- `gradient_accumulation_steps`: 1
|
207 |
+
- `eval_accumulation_steps`: None
|
208 |
+
- `torch_empty_cache_steps`: None
|
209 |
+
- `learning_rate`: 5e-05
|
210 |
+
- `weight_decay`: 0.0
|
211 |
+
- `adam_beta1`: 0.9
|
212 |
+
- `adam_beta2`: 0.999
|
213 |
+
- `adam_epsilon`: 1e-08
|
214 |
+
- `max_grad_norm`: 1
|
215 |
+
- `num_train_epochs`: 1
|
216 |
+
- `max_steps`: -1
|
217 |
+
- `lr_scheduler_type`: linear
|
218 |
+
- `lr_scheduler_kwargs`: {}
|
219 |
+
- `warmup_ratio`: 0.0
|
220 |
+
- `warmup_steps`: 0
|
221 |
+
- `log_level`: passive
|
222 |
+
- `log_level_replica`: warning
|
223 |
+
- `log_on_each_node`: True
|
224 |
+
- `logging_nan_inf_filter`: True
|
225 |
+
- `save_safetensors`: True
|
226 |
+
- `save_on_each_node`: False
|
227 |
+
- `save_only_model`: False
|
228 |
+
- `restore_callback_states_from_checkpoint`: False
|
229 |
+
- `no_cuda`: False
|
230 |
+
- `use_cpu`: False
|
231 |
+
- `use_mps_device`: False
|
232 |
+
- `seed`: 42
|
233 |
+
- `data_seed`: None
|
234 |
+
- `jit_mode_eval`: False
|
235 |
+
- `use_ipex`: False
|
236 |
+
- `bf16`: False
|
237 |
+
- `fp16`: True
|
238 |
+
- `fp16_opt_level`: O1
|
239 |
+
- `half_precision_backend`: auto
|
240 |
+
- `bf16_full_eval`: False
|
241 |
+
- `fp16_full_eval`: False
|
242 |
+
- `tf32`: None
|
243 |
+
- `local_rank`: 0
|
244 |
+
- `ddp_backend`: None
|
245 |
+
- `tpu_num_cores`: None
|
246 |
+
- `tpu_metrics_debug`: False
|
247 |
+
- `debug`: []
|
248 |
+
- `dataloader_drop_last`: False
|
249 |
+
- `dataloader_num_workers`: 0
|
250 |
+
- `dataloader_prefetch_factor`: None
|
251 |
+
- `past_index`: -1
|
252 |
+
- `disable_tqdm`: False
|
253 |
+
- `remove_unused_columns`: True
|
254 |
+
- `label_names`: None
|
255 |
+
- `load_best_model_at_end`: False
|
256 |
+
- `ignore_data_skip`: False
|
257 |
+
- `fsdp`: []
|
258 |
+
- `fsdp_min_num_params`: 0
|
259 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
260 |
+
- `tp_size`: 0
|
261 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
262 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
263 |
+
- `deepspeed`: None
|
264 |
+
- `label_smoothing_factor`: 0.0
|
265 |
+
- `optim`: adamw_torch
|
266 |
+
- `optim_args`: None
|
267 |
+
- `adafactor`: False
|
268 |
+
- `group_by_length`: False
|
269 |
+
- `length_column_name`: length
|
270 |
+
- `ddp_find_unused_parameters`: None
|
271 |
+
- `ddp_bucket_cap_mb`: None
|
272 |
+
- `ddp_broadcast_buffers`: False
|
273 |
+
- `dataloader_pin_memory`: True
|
274 |
+
- `dataloader_persistent_workers`: False
|
275 |
+
- `skip_memory_metrics`: True
|
276 |
+
- `use_legacy_prediction_loop`: False
|
277 |
+
- `push_to_hub`: False
|
278 |
+
- `resume_from_checkpoint`: None
|
279 |
+
- `hub_model_id`: None
|
280 |
+
- `hub_strategy`: every_save
|
281 |
+
- `hub_private_repo`: None
|
282 |
+
- `hub_always_push`: False
|
283 |
+
- `gradient_checkpointing`: False
|
284 |
+
- `gradient_checkpointing_kwargs`: None
|
285 |
+
- `include_inputs_for_metrics`: False
|
286 |
+
- `include_for_metrics`: []
|
287 |
+
- `eval_do_concat_batches`: True
|
288 |
+
- `fp16_backend`: auto
|
289 |
+
- `push_to_hub_model_id`: None
|
290 |
+
- `push_to_hub_organization`: None
|
291 |
+
- `mp_parameters`:
|
292 |
+
- `auto_find_batch_size`: False
|
293 |
+
- `full_determinism`: False
|
294 |
+
- `torchdynamo`: None
|
295 |
+
- `ray_scope`: last
|
296 |
+
- `ddp_timeout`: 1800
|
297 |
+
- `torch_compile`: False
|
298 |
+
- `torch_compile_backend`: None
|
299 |
+
- `torch_compile_mode`: None
|
300 |
+
- `include_tokens_per_second`: False
|
301 |
+
- `include_num_input_tokens_seen`: False
|
302 |
+
- `neftune_noise_alpha`: None
|
303 |
+
- `optim_target_modules`: None
|
304 |
+
- `batch_eval_metrics`: False
|
305 |
+
- `eval_on_start`: False
|
306 |
+
- `use_liger_kernel`: False
|
307 |
+
- `eval_use_gather_object`: False
|
308 |
+
- `average_tokens_across_devices`: False
|
309 |
+
- `prompts`: None
|
310 |
+
- `batch_sampler`: batch_sampler
|
311 |
+
- `multi_dataset_batch_sampler`: round_robin
|
312 |
+
|
313 |
+
</details>
|
314 |
+
|
315 |
+
### Training Logs
|
316 |
+
<details><summary>Click to expand</summary>
|
317 |
+
|
318 |
+
| Epoch | Step | Training Loss |
|
319 |
+
|:------:|:-----:|:-------------:|
|
320 |
+
| 0.0012 | 100 | - |
|
321 |
+
| 0.0024 | 200 | - |
|
322 |
+
| 0.0036 | 300 | - |
|
323 |
+
| 0.0048 | 400 | - |
|
324 |
+
| 0.0060 | 500 | 0.5331 |
|
325 |
+
| 0.0072 | 600 | - |
|
326 |
+
| 0.0084 | 700 | - |
|
327 |
+
| 0.0096 | 800 | - |
|
328 |
+
| 0.0108 | 900 | - |
|
329 |
+
| 0.0120 | 1000 | 0.3694 |
|
330 |
+
| 0.0132 | 1100 | - |
|
331 |
+
| 0.0144 | 1200 | - |
|
332 |
+
| 0.0156 | 1300 | - |
|
333 |
+
| 0.0168 | 1400 | - |
|
334 |
+
| 0.0180 | 1500 | 0.3141 |
|
335 |
+
| 0.0192 | 1600 | - |
|
336 |
+
| 0.0204 | 1700 | - |
|
337 |
+
| 0.0216 | 1800 | - |
|
338 |
+
| 0.0228 | 1900 | - |
|
339 |
+
| 0.0240 | 2000 | 0.2836 |
|
340 |
+
| 0.0252 | 2100 | - |
|
341 |
+
| 0.0264 | 2200 | - |
|
342 |
+
| 0.0276 | 2300 | - |
|
343 |
+
| 0.0288 | 2400 | - |
|
344 |
+
| 0.0300 | 2500 | 0.2823 |
|
345 |
+
| 0.0312 | 2600 | - |
|
346 |
+
| 0.0324 | 2700 | - |
|
347 |
+
| 0.0336 | 2800 | - |
|
348 |
+
| 0.0348 | 2900 | - |
|
349 |
+
| 0.0360 | 3000 | 0.265 |
|
350 |
+
| 0.0372 | 3100 | - |
|
351 |
+
| 0.0384 | 3200 | - |
|
352 |
+
| 0.0396 | 3300 | - |
|
353 |
+
| 0.0408 | 3400 | - |
|
354 |
+
| 0.0420 | 3500 | 0.2599 |
|
355 |
+
| 0.0432 | 3600 | - |
|
356 |
+
| 0.0444 | 3700 | - |
|
357 |
+
| 0.0456 | 3800 | - |
|
358 |
+
| 0.0468 | 3900 | - |
|
359 |
+
| 0.0480 | 4000 | 0.234 |
|
360 |
+
| 0.0492 | 4100 | - |
|
361 |
+
| 0.0504 | 4200 | - |
|
362 |
+
| 0.0516 | 4300 | - |
|
363 |
+
| 0.0528 | 4400 | - |
|
364 |
+
| 0.0540 | 4500 | 0.1966 |
|
365 |
+
| 0.0552 | 4600 | - |
|
366 |
+
| 0.0564 | 4700 | - |
|
367 |
+
| 0.0576 | 4800 | - |
|
368 |
+
| 0.0588 | 4900 | - |
|
369 |
+
| 0.0600 | 5000 | 0.2204 |
|
370 |
+
| 0.0612 | 5100 | - |
|
371 |
+
| 0.0624 | 5200 | - |
|
372 |
+
| 0.0636 | 5300 | - |
|
373 |
+
| 0.0648 | 5400 | - |
|
374 |
+
| 0.0660 | 5500 | 0.2272 |
|
375 |
+
| 0.0672 | 5600 | - |
|
376 |
+
| 0.0684 | 5700 | - |
|
377 |
+
| 0.0696 | 5800 | - |
|
378 |
+
| 0.0708 | 5900 | - |
|
379 |
+
| 0.0720 | 6000 | 0.2256 |
|
380 |
+
| 0.0732 | 6100 | - |
|
381 |
+
| 0.0744 | 6200 | - |
|
382 |
+
| 0.0756 | 6300 | - |
|
383 |
+
| 0.0768 | 6400 | - |
|
384 |
+
| 0.0780 | 6500 | 0.2071 |
|
385 |
+
| 0.0792 | 6600 | - |
|
386 |
+
| 0.0804 | 6700 | - |
|
387 |
+
| 0.0816 | 6800 | - |
|
388 |
+
| 0.0828 | 6900 | - |
|
389 |
+
| 0.0840 | 7000 | 0.2113 |
|
390 |
+
| 0.0852 | 7100 | - |
|
391 |
+
| 0.0864 | 7200 | - |
|
392 |
+
| 0.0876 | 7300 | - |
|
393 |
+
| 0.0888 | 7400 | - |
|
394 |
+
| 0.0900 | 7500 | 0.2222 |
|
395 |
+
| 0.0912 | 7600 | - |
|
396 |
+
| 0.0924 | 7700 | - |
|
397 |
+
| 0.0936 | 7800 | - |
|
398 |
+
| 0.0948 | 7900 | - |
|
399 |
+
| 0.0960 | 8000 | 0.2186 |
|
400 |
+
| 0.0972 | 8100 | - |
|
401 |
+
| 0.0984 | 8200 | - |
|
402 |
+
| 0.0996 | 8300 | - |
|
403 |
+
| 0.1008 | 8400 | - |
|
404 |
+
| 0.1020 | 8500 | 0.2137 |
|
405 |
+
| 0.1032 | 8600 | - |
|
406 |
+
| 0.1044 | 8700 | - |
|
407 |
+
| 0.1056 | 8800 | - |
|
408 |
+
| 0.1068 | 8900 | - |
|
409 |
+
| 0.1080 | 9000 | 0.1928 |
|
410 |
+
| 0.1092 | 9100 | - |
|
411 |
+
| 0.1104 | 9200 | - |
|
412 |
+
| 0.1116 | 9300 | - |
|
413 |
+
| 0.1128 | 9400 | - |
|
414 |
+
| 0.1140 | 9500 | 0.2117 |
|
415 |
+
| 0.1152 | 9600 | - |
|
416 |
+
| 0.1164 | 9700 | - |
|
417 |
+
| 0.1176 | 9800 | - |
|
418 |
+
| 0.1188 | 9900 | - |
|
419 |
+
| 0.1200 | 10000 | 0.1987 |
|
420 |
+
| 0.1212 | 10100 | - |
|
421 |
+
| 0.1224 | 10200 | - |
|
422 |
+
| 0.1236 | 10300 | - |
|
423 |
+
| 0.1248 | 10400 | - |
|
424 |
+
| 0.1260 | 10500 | 0.2011 |
|
425 |
+
| 0.1272 | 10600 | - |
|
426 |
+
| 0.1284 | 10700 | - |
|
427 |
+
| 0.1296 | 10800 | - |
|
428 |
+
| 0.1308 | 10900 | - |
|
429 |
+
| 0.1320 | 11000 | 0.1775 |
|
430 |
+
| 0.1332 | 11100 | - |
|
431 |
+
| 0.1344 | 11200 | - |
|
432 |
+
| 0.1356 | 11300 | - |
|
433 |
+
| 0.1368 | 11400 | - |
|
434 |
+
| 0.1380 | 11500 | 0.2048 |
|
435 |
+
| 0.1392 | 11600 | - |
|
436 |
+
| 0.1404 | 11700 | - |
|
437 |
+
| 0.1416 | 11800 | - |
|
438 |
+
| 0.1428 | 11900 | - |
|
439 |
+
| 0.1440 | 12000 | 0.2064 |
|
440 |
+
| 0.1452 | 12100 | - |
|
441 |
+
| 0.1464 | 12200 | - |
|
442 |
+
| 0.1476 | 12300 | - |
|
443 |
+
| 0.1488 | 12400 | - |
|
444 |
+
| 0.1500 | 12500 | 0.1883 |
|
445 |
+
| 0.1512 | 12600 | - |
|
446 |
+
| 0.1524 | 12700 | - |
|
447 |
+
| 0.1536 | 12800 | - |
|
448 |
+
| 0.1548 | 12900 | - |
|
449 |
+
| 0.1560 | 13000 | 0.2084 |
|
450 |
+
| 0.1572 | 13100 | - |
|
451 |
+
| 0.1584 | 13200 | - |
|
452 |
+
| 0.1596 | 13300 | - |
|
453 |
+
| 0.1608 | 13400 | - |
|
454 |
+
| 0.1620 | 13500 | 0.2077 |
|
455 |
+
| 0.1632 | 13600 | - |
|
456 |
+
| 0.1644 | 13700 | - |
|
457 |
+
| 0.1656 | 13800 | - |
|
458 |
+
| 0.1668 | 13900 | - |
|
459 |
+
| 0.1680 | 14000 | 0.1866 |
|
460 |
+
| 0.1692 | 14100 | - |
|
461 |
+
| 0.1704 | 14200 | - |
|
462 |
+
| 0.1716 | 14300 | - |
|
463 |
+
| 0.1728 | 14400 | - |
|
464 |
+
| 0.1740 | 14500 | 0.1859 |
|
465 |
+
| 0.1752 | 14600 | - |
|
466 |
+
| 0.1764 | 14700 | - |
|
467 |
+
| 0.1776 | 14800 | - |
|
468 |
+
| 0.1788 | 14900 | - |
|
469 |
+
| 0.1800 | 15000 | 0.1735 |
|
470 |
+
| 0.1812 | 15100 | - |
|
471 |
+
| 0.1824 | 15200 | - |
|
472 |
+
| 0.1836 | 15300 | - |
|
473 |
+
| 0.1848 | 15400 | - |
|
474 |
+
| 0.1860 | 15500 | 0.171 |
|
475 |
+
| 0.1872 | 15600 | - |
|
476 |
+
| 0.1884 | 15700 | - |
|
477 |
+
| 0.1896 | 15800 | - |
|
478 |
+
| 0.1908 | 15900 | - |
|
479 |
+
| 0.1920 | 16000 | 0.1465 |
|
480 |
+
| 0.1932 | 16100 | - |
|
481 |
+
| 0.1944 | 16200 | - |
|
482 |
+
| 0.1956 | 16300 | - |
|
483 |
+
| 0.1968 | 16400 | - |
|
484 |
+
| 0.1980 | 16500 | 0.1921 |
|
485 |
+
| 0.1992 | 16600 | - |
|
486 |
+
| 0.2004 | 16700 | - |
|
487 |
+
| 0.2016 | 16800 | - |
|
488 |
+
| 0.2028 | 16900 | - |
|
489 |
+
| 0.2040 | 17000 | 0.1669 |
|
490 |
+
| 0.2052 | 17100 | - |
|
491 |
+
| 0.2064 | 17200 | - |
|
492 |
+
| 0.2076 | 17300 | - |
|
493 |
+
| 0.2088 | 17400 | - |
|
494 |
+
| 0.2100 | 17500 | 0.1656 |
|
495 |
+
| 0.2112 | 17600 | - |
|
496 |
+
| 0.2124 | 17700 | - |
|
497 |
+
| 0.2136 | 17800 | - |
|
498 |
+
| 0.2148 | 17900 | - |
|
499 |
+
| 0.2160 | 18000 | 0.1952 |
|
500 |
+
| 0.2172 | 18100 | - |
|
501 |
+
| 0.2184 | 18200 | - |
|
502 |
+
| 0.2196 | 18300 | - |
|
503 |
+
| 0.2208 | 18400 | - |
|
504 |
+
| 0.2220 | 18500 | 0.1658 |
|
505 |
+
| 0.2232 | 18600 | - |
|
506 |
+
| 0.2244 | 18700 | - |
|
507 |
+
| 0.2256 | 18800 | - |
|
508 |
+
| 0.2268 | 18900 | - |
|
509 |
+
| 0.2280 | 19000 | 0.1774 |
|
510 |
+
| 0.2292 | 19100 | - |
|
511 |
+
| 0.2304 | 19200 | - |
|
512 |
+
| 0.2316 | 19300 | - |
|
513 |
+
| 0.2328 | 19400 | - |
|
514 |
+
| 0.2340 | 19500 | 0.1802 |
|
515 |
+
| 0.2352 | 19600 | - |
|
516 |
+
| 0.2364 | 19700 | - |
|
517 |
+
| 0.2376 | 19800 | - |
|
518 |
+
| 0.2388 | 19900 | - |
|
519 |
+
| 0.2400 | 20000 | 0.1724 |
|
520 |
+
| 0.2412 | 20100 | - |
|
521 |
+
| 0.2424 | 20200 | - |
|
522 |
+
| 0.2436 | 20300 | - |
|
523 |
+
| 0.2448 | 20400 | - |
|
524 |
+
| 0.2460 | 20500 | 0.1653 |
|
525 |
+
| 0.2472 | 20600 | - |
|
526 |
+
| 0.2484 | 20700 | - |
|
527 |
+
| 0.2496 | 20800 | - |
|
528 |
+
| 0.2508 | 20900 | - |
|
529 |
+
| 0.2520 | 21000 | 0.1484 |
|
530 |
+
| 0.2532 | 21100 | - |
|
531 |
+
| 0.2544 | 21200 | - |
|
532 |
+
| 0.2556 | 21300 | - |
|
533 |
+
| 0.2568 | 21400 | - |
|
534 |
+
| 0.2580 | 21500 | 0.1544 |
|
535 |
+
| 0.2592 | 21600 | - |
|
536 |
+
| 0.2604 | 21700 | - |
|
537 |
+
| 0.2616 | 21800 | - |
|
538 |
+
| 0.2628 | 21900 | - |
|
539 |
+
| 0.2640 | 22000 | 0.174 |
|
540 |
+
| 0.2652 | 22100 | - |
|
541 |
+
| 0.2664 | 22200 | - |
|
542 |
+
| 0.2676 | 22300 | - |
|
543 |
+
| 0.2688 | 22400 | - |
|
544 |
+
| 0.2700 | 22500 | 0.1488 |
|
545 |
+
| 0.2712 | 22600 | - |
|
546 |
+
| 0.2724 | 22700 | - |
|
547 |
+
| 0.2736 | 22800 | - |
|
548 |
+
| 0.2748 | 22900 | - |
|
549 |
+
| 0.2760 | 23000 | 0.1696 |
|
550 |
+
| 0.2772 | 23100 | - |
|
551 |
+
| 0.2784 | 23200 | - |
|
552 |
+
| 0.2796 | 23300 | - |
|
553 |
+
| 0.2808 | 23400 | - |
|
554 |
+
| 0.2820 | 23500 | 0.1468 |
|
555 |
+
| 0.2832 | 23600 | - |
|
556 |
+
| 0.2844 | 23700 | - |
|
557 |
+
| 0.2856 | 23800 | - |
|
558 |
+
| 0.2868 | 23900 | - |
|
559 |
+
| 0.2880 | 24000 | 0.1738 |
|
560 |
+
| 0.2892 | 24100 | - |
|
561 |
+
| 0.2904 | 24200 | - |
|
562 |
+
| 0.2916 | 24300 | - |
|
563 |
+
| 0.2928 | 24400 | - |
|
564 |
+
| 0.2940 | 24500 | 0.1667 |
|
565 |
+
| 0.2952 | 24600 | - |
|
566 |
+
| 0.2964 | 24700 | - |
|
567 |
+
| 0.2976 | 24800 | - |
|
568 |
+
| 0.2988 | 24900 | - |
|
569 |
+
| 0.3000 | 25000 | 0.1562 |
|
570 |
+
| 0.3012 | 25100 | - |
|
571 |
+
| 0.3024 | 25200 | - |
|
572 |
+
| 0.3036 | 25300 | - |
|
573 |
+
| 0.3048 | 25400 | - |
|
574 |
+
| 0.3060 | 25500 | 0.1628 |
|
575 |
+
| 0.3072 | 25600 | - |
|
576 |
+
| 0.3084 | 25700 | - |
|
577 |
+
| 0.3096 | 25800 | - |
|
578 |
+
| 0.3108 | 25900 | - |
|
579 |
+
| 0.3120 | 26000 | 0.1392 |
|
580 |
+
| 0.3132 | 26100 | - |
|
581 |
+
| 0.3144 | 26200 | - |
|
582 |
+
| 0.3156 | 26300 | - |
|
583 |
+
| 0.3168 | 26400 | - |
|
584 |
+
| 0.3180 | 26500 | 0.1507 |
|
585 |
+
| 0.3192 | 26600 | - |
|
586 |
+
| 0.3204 | 26700 | - |
|
587 |
+
| 0.3216 | 26800 | - |
|
588 |
+
| 0.3228 | 26900 | - |
|
589 |
+
| 0.3240 | 27000 | 0.1646 |
|
590 |
+
| 0.3252 | 27100 | - |
|
591 |
+
| 0.3264 | 27200 | - |
|
592 |
+
| 0.3276 | 27300 | - |
|
593 |
+
| 0.3288 | 27400 | - |
|
594 |
+
| 0.3300 | 27500 | 0.1433 |
|
595 |
+
| 0.3312 | 27600 | - |
|
596 |
+
| 0.3324 | 27700 | - |
|
597 |
+
| 0.3336 | 27800 | - |
|
598 |
+
| 0.3348 | 27900 | - |
|
599 |
+
| 0.3360 | 28000 | 0.1689 |
|
600 |
+
| 0.3372 | 28100 | - |
|
601 |
+
| 0.3384 | 28200 | - |
|
602 |
+
| 0.3396 | 28300 | - |
|
603 |
+
| 0.3408 | 28400 | - |
|
604 |
+
| 0.3420 | 28500 | 0.1432 |
|
605 |
+
| 0.3432 | 28600 | - |
|
606 |
+
| 0.3444 | 28700 | - |
|
607 |
+
| 0.3456 | 28800 | - |
|
608 |
+
| 0.3468 | 28900 | - |
|
609 |
+
| 0.3480 | 29000 | 0.1534 |
|
610 |
+
| 0.3492 | 29100 | - |
|
611 |
+
| 0.3504 | 29200 | - |
|
612 |
+
| 0.3516 | 29300 | - |
|
613 |
+
| 0.3528 | 29400 | - |
|
614 |
+
| 0.3540 | 29500 | 0.1487 |
|
615 |
+
| 0.3552 | 29600 | - |
|
616 |
+
| 0.3564 | 29700 | - |
|
617 |
+
| 0.3576 | 29800 | - |
|
618 |
+
| 0.3588 | 29900 | - |
|
619 |
+
| 0.3600 | 30000 | 0.1439 |
|
620 |
+
| 0.3612 | 30100 | - |
|
621 |
+
| 0.3624 | 30200 | - |
|
622 |
+
| 0.3636 | 30300 | - |
|
623 |
+
| 0.3648 | 30400 | - |
|
624 |
+
| 0.3660 | 30500 | 0.1397 |
|
625 |
+
| 0.3672 | 30600 | - |
|
626 |
+
| 0.3684 | 30700 | - |
|
627 |
+
| 0.3696 | 30800 | - |
|
628 |
+
| 0.3708 | 30900 | - |
|
629 |
+
| 0.3720 | 31000 | 0.1542 |
|
630 |
+
| 0.3732 | 31100 | - |
|
631 |
+
| 0.3744 | 31200 | - |
|
632 |
+
| 0.3756 | 31300 | - |
|
633 |
+
| 0.3768 | 31400 | - |
|
634 |
+
| 0.3780 | 31500 | 0.1448 |
|
635 |
+
| 0.3792 | 31600 | - |
|
636 |
+
| 0.3804 | 31700 | - |
|
637 |
+
| 0.3816 | 31800 | - |
|
638 |
+
| 0.3828 | 31900 | - |
|
639 |
+
| 0.3840 | 32000 | 0.1608 |
|
640 |
+
| 0.3852 | 32100 | - |
|
641 |
+
| 0.3864 | 32200 | - |
|
642 |
+
| 0.3876 | 32300 | - |
|
643 |
+
| 0.3888 | 32400 | - |
|
644 |
+
| 0.3900 | 32500 | 0.1486 |
|
645 |
+
| 0.3912 | 32600 | - |
|
646 |
+
| 0.3924 | 32700 | - |
|
647 |
+
| 0.3936 | 32800 | - |
|
648 |
+
| 0.3948 | 32900 | - |
|
649 |
+
| 0.3960 | 33000 | 0.1274 |
|
650 |
+
| 0.3972 | 33100 | - |
|
651 |
+
| 0.3984 | 33200 | - |
|
652 |
+
| 0.3996 | 33300 | - |
|
653 |
+
| 0.4008 | 33400 | - |
|
654 |
+
| 0.4020 | 33500 | 0.1451 |
|
655 |
+
| 0.4032 | 33600 | - |
|
656 |
+
| 0.4044 | 33700 | - |
|
657 |
+
| 0.4056 | 33800 | - |
|
658 |
+
| 0.4068 | 33900 | - |
|
659 |
+
| 0.4080 | 34000 | 0.1316 |
|
660 |
+
| 0.4092 | 34100 | - |
|
661 |
+
| 0.4104 | 34200 | - |
|
662 |
+
| 0.4116 | 34300 | - |
|
663 |
+
| 0.4128 | 34400 | - |
|
664 |
+
| 0.4140 | 34500 | 0.1306 |
|
665 |
+
| 0.4152 | 34600 | - |
|
666 |
+
| 0.4164 | 34700 | - |
|
667 |
+
| 0.4176 | 34800 | - |
|
668 |
+
| 0.4188 | 34900 | - |
|
669 |
+
| 0.4200 | 35000 | 0.1382 |
|
670 |
+
| 0.4212 | 35100 | - |
|
671 |
+
| 0.4224 | 35200 | - |
|
672 |
+
| 0.4236 | 35300 | - |
|
673 |
+
| 0.4248 | 35400 | - |
|
674 |
+
| 0.4260 | 35500 | 0.1322 |
|
675 |
+
| 0.4272 | 35600 | - |
|
676 |
+
| 0.4284 | 35700 | - |
|
677 |
+
| 0.4296 | 35800 | - |
|
678 |
+
| 0.4308 | 35900 | - |
|
679 |
+
| 0.4320 | 36000 | 0.1617 |
|
680 |
+
| 0.4332 | 36100 | - |
|
681 |
+
| 0.4344 | 36200 | - |
|
682 |
+
| 0.4356 | 36300 | - |
|
683 |
+
| 0.4368 | 36400 | - |
|
684 |
+
| 0.4380 | 36500 | 0.14 |
|
685 |
+
| 0.4392 | 36600 | - |
|
686 |
+
| 0.4404 | 36700 | - |
|
687 |
+
| 0.4416 | 36800 | - |
|
688 |
+
| 0.4428 | 36900 | - |
|
689 |
+
| 0.4440 | 37000 | 0.1321 |
|
690 |
+
| 0.4452 | 37100 | - |
|
691 |
+
| 0.4464 | 37200 | - |
|
692 |
+
| 0.4476 | 37300 | - |
|
693 |
+
| 0.4488 | 37400 | - |
|
694 |
+
| 0.4500 | 37500 | 0.1464 |
|
695 |
+
| 0.4512 | 37600 | - |
|
696 |
+
| 0.4524 | 37700 | - |
|
697 |
+
| 0.4536 | 37800 | - |
|
698 |
+
| 0.4548 | 37900 | - |
|
699 |
+
| 0.4560 | 38000 | 0.1236 |
|
700 |
+
| 0.4572 | 38100 | - |
|
701 |
+
| 0.4584 | 38200 | - |
|
702 |
+
| 0.4596 | 38300 | - |
|
703 |
+
| 0.4608 | 38400 | - |
|
704 |
+
| 0.4620 | 38500 | 0.147 |
|
705 |
+
| 0.4632 | 38600 | - |
|
706 |
+
| 0.4644 | 38700 | - |
|
707 |
+
| 0.4656 | 38800 | - |
|
708 |
+
| 0.4668 | 38900 | - |
|
709 |
+
| 0.4680 | 39000 | 0.1376 |
|
710 |
+
| 0.4692 | 39100 | - |
|
711 |
+
| 0.4704 | 39200 | - |
|
712 |
+
| 0.4716 | 39300 | - |
|
713 |
+
| 0.4728 | 39400 | - |
|
714 |
+
| 0.4740 | 39500 | 0.1342 |
|
715 |
+
| 0.4752 | 39600 | - |
|
716 |
+
| 0.4764 | 39700 | - |
|
717 |
+
| 0.4776 | 39800 | - |
|
718 |
+
| 0.4788 | 39900 | - |
|
719 |
+
| 0.4800 | 40000 | 0.123 |
|
720 |
+
| 0.4812 | 40100 | - |
|
721 |
+
| 0.4824 | 40200 | - |
|
722 |
+
| 0.4836 | 40300 | - |
|
723 |
+
| 0.4848 | 40400 | - |
|
724 |
+
| 0.4860 | 40500 | 0.1312 |
|
725 |
+
| 0.4872 | 40600 | - |
|
726 |
+
| 0.4884 | 40700 | - |
|
727 |
+
| 0.4896 | 40800 | - |
|
728 |
+
| 0.4908 | 40900 | - |
|
729 |
+
| 0.4920 | 41000 | 0.1325 |
|
730 |
+
| 0.4932 | 41100 | - |
|
731 |
+
| 0.4944 | 41200 | - |
|
732 |
+
| 0.4956 | 41300 | - |
|
733 |
+
| 0.4968 | 41400 | - |
|
734 |
+
| 0.4980 | 41500 | 0.1203 |
|
735 |
+
| 0.4992 | 41600 | - |
|
736 |
+
| 0.5004 | 41700 | - |
|
737 |
+
| 0.5016 | 41800 | - |
|
738 |
+
| 0.5028 | 41900 | - |
|
739 |
+
| 0.5040 | 42000 | 0.1258 |
|
740 |
+
| 0.5052 | 42100 | - |
|
741 |
+
| 0.5064 | 42200 | - |
|
742 |
+
| 0.5076 | 42300 | - |
|
743 |
+
| 0.5088 | 42400 | - |
|
744 |
+
| 0.5100 | 42500 | 0.141 |
|
745 |
+
| 0.5112 | 42600 | - |
|
746 |
+
| 0.5124 | 42700 | - |
|
747 |
+
| 0.5136 | 42800 | - |
|
748 |
+
| 0.5148 | 42900 | - |
|
749 |
+
| 0.5160 | 43000 | 0.1473 |
|
750 |
+
| 0.5172 | 43100 | - |
|
751 |
+
| 0.5184 | 43200 | - |
|
752 |
+
| 0.5196 | 43300 | - |
|
753 |
+
| 0.5208 | 43400 | - |
|
754 |
+
| 0.5220 | 43500 | 0.1247 |
|
755 |
+
| 0.5232 | 43600 | - |
|
756 |
+
| 0.5244 | 43700 | - |
|
757 |
+
| 0.5256 | 43800 | - |
|
758 |
+
| 0.5268 | 43900 | - |
|
759 |
+
| 0.5280 | 44000 | 0.1259 |
|
760 |
+
| 0.5292 | 44100 | - |
|
761 |
+
| 0.5304 | 44200 | - |
|
762 |
+
| 0.5316 | 44300 | - |
|
763 |
+
| 0.5328 | 44400 | - |
|
764 |
+
| 0.5340 | 44500 | 0.1372 |
|
765 |
+
| 0.5352 | 44600 | - |
|
766 |
+
| 0.5364 | 44700 | - |
|
767 |
+
| 0.5376 | 44800 | - |
|
768 |
+
| 0.5388 | 44900 | - |
|
769 |
+
| 0.5400 | 45000 | 0.1413 |
|
770 |
+
| 0.5412 | 45100 | - |
|
771 |
+
| 0.5424 | 45200 | - |
|
772 |
+
| 0.5436 | 45300 | - |
|
773 |
+
| 0.5448 | 45400 | - |
|
774 |
+
| 0.5460 | 45500 | 0.1157 |
|
775 |
+
| 0.5472 | 45600 | - |
|
776 |
+
| 0.5484 | 45700 | - |
|
777 |
+
| 0.5496 | 45800 | - |
|
778 |
+
| 0.5508 | 45900 | - |
|
779 |
+
| 0.5520 | 46000 | 0.127 |
|
780 |
+
| 0.5532 | 46100 | - |
|
781 |
+
| 0.5544 | 46200 | - |
|
782 |
+
| 0.5556 | 46300 | - |
|
783 |
+
| 0.5568 | 46400 | - |
|
784 |
+
| 0.5580 | 46500 | 0.1202 |
|
785 |
+
| 0.5592 | 46600 | - |
|
786 |
+
| 0.5604 | 46700 | - |
|
787 |
+
| 0.5616 | 46800 | - |
|
788 |
+
| 0.5628 | 46900 | - |
|
789 |
+
| 0.5640 | 47000 | 0.1199 |
|
790 |
+
| 0.5652 | 47100 | - |
|
791 |
+
| 0.5664 | 47200 | - |
|
792 |
+
| 0.5676 | 47300 | - |
|
793 |
+
| 0.5688 | 47400 | - |
|
794 |
+
| 0.5700 | 47500 | 0.1309 |
|
795 |
+
| 0.5712 | 47600 | - |
|
796 |
+
| 0.5724 | 47700 | - |
|
797 |
+
| 0.5736 | 47800 | - |
|
798 |
+
| 0.5748 | 47900 | - |
|
799 |
+
| 0.5760 | 48000 | 0.1276 |
|
800 |
+
| 0.5772 | 48100 | - |
|
801 |
+
| 0.5784 | 48200 | - |
|
802 |
+
| 0.5796 | 48300 | - |
|
803 |
+
| 0.5808 | 48400 | - |
|
804 |
+
| 0.5820 | 48500 | 0.1278 |
|
805 |
+
| 0.5832 | 48600 | - |
|
806 |
+
| 0.5844 | 48700 | - |
|
807 |
+
| 0.5856 | 48800 | - |
|
808 |
+
| 0.5868 | 48900 | - |
|
809 |
+
| 0.5880 | 49000 | 0.1175 |
|
810 |
+
| 0.5892 | 49100 | - |
|
811 |
+
| 0.5904 | 49200 | - |
|
812 |
+
| 0.5916 | 49300 | - |
|
813 |
+
| 0.5928 | 49400 | - |
|
814 |
+
| 0.5940 | 49500 | 0.1327 |
|
815 |
+
| 0.5952 | 49600 | - |
|
816 |
+
| 0.5964 | 49700 | - |
|
817 |
+
| 0.5976 | 49800 | - |
|
818 |
+
| 0.5988 | 49900 | - |
|
819 |
+
| 0.6000 | 50000 | 0.1109 |
|
820 |
+
| 0.6012 | 50100 | - |
|
821 |
+
| 0.6024 | 50200 | - |
|
822 |
+
| 0.6036 | 50300 | - |
|
823 |
+
| 0.6048 | 50400 | - |
|
824 |
+
| 0.6060 | 50500 | 0.1248 |
|
825 |
+
| 0.6072 | 50600 | - |
|
826 |
+
| 0.6084 | 50700 | - |
|
827 |
+
| 0.6096 | 50800 | - |
|
828 |
+
| 0.6108 | 50900 | - |
|
829 |
+
| 0.6120 | 51000 | 0.1296 |
|
830 |
+
| 0.6132 | 51100 | - |
|
831 |
+
| 0.6144 | 51200 | - |
|
832 |
+
| 0.6156 | 51300 | - |
|
833 |
+
| 0.6168 | 51400 | - |
|
834 |
+
| 0.6180 | 51500 | 0.1323 |
|
835 |
+
| 0.6192 | 51600 | - |
|
836 |
+
| 0.6204 | 51700 | - |
|
837 |
+
| 0.6216 | 51800 | - |
|
838 |
+
| 0.6228 | 51900 | - |
|
839 |
+
| 0.6240 | 52000 | 0.1155 |
|
840 |
+
| 0.6252 | 52100 | - |
|
841 |
+
| 0.6264 | 52200 | - |
|
842 |
+
| 0.6276 | 52300 | - |
|
843 |
+
| 0.6288 | 52400 | - |
|
844 |
+
| 0.6300 | 52500 | 0.1245 |
|
845 |
+
| 0.6312 | 52600 | - |
|
846 |
+
| 0.6324 | 52700 | - |
|
847 |
+
| 0.6336 | 52800 | - |
|
848 |
+
| 0.6348 | 52900 | - |
|
849 |
+
| 0.6360 | 53000 | 0.1238 |
|
850 |
+
| 0.6372 | 53100 | - |
|
851 |
+
| 0.6384 | 53200 | - |
|
852 |
+
| 0.6396 | 53300 | - |
|
853 |
+
| 0.6408 | 53400 | - |
|
854 |
+
| 0.6420 | 53500 | 0.12 |
|
855 |
+
| 0.6432 | 53600 | - |
|
856 |
+
| 0.6444 | 53700 | - |
|
857 |
+
| 0.6456 | 53800 | - |
|
858 |
+
| 0.6468 | 53900 | - |
|
859 |
+
| 0.6480 | 54000 | 0.1116 |
|
860 |
+
| 0.6492 | 54100 | - |
|
861 |
+
| 0.6504 | 54200 | - |
|
862 |
+
| 0.6516 | 54300 | - |
|
863 |
+
| 0.6528 | 54400 | - |
|
864 |
+
| 0.6540 | 54500 | 0.1305 |
|
865 |
+
| 0.6552 | 54600 | - |
|
866 |
+
| 0.6564 | 54700 | - |
|
867 |
+
| 0.6576 | 54800 | - |
|
868 |
+
| 0.6588 | 54900 | - |
|
869 |
+
| 0.6600 | 55000 | 0.1355 |
|
870 |
+
| 0.6612 | 55100 | - |
|
871 |
+
| 0.6624 | 55200 | - |
|
872 |
+
| 0.6636 | 55300 | - |
|
873 |
+
| 0.6648 | 55400 | - |
|
874 |
+
| 0.6660 | 55500 | 0.1139 |
|
875 |
+
| 0.6672 | 55600 | - |
|
876 |
+
| 0.6684 | 55700 | - |
|
877 |
+
| 0.6696 | 55800 | - |
|
878 |
+
| 0.6708 | 55900 | - |
|
879 |
+
| 0.6720 | 56000 | 0.1251 |
|
880 |
+
| 0.6732 | 56100 | - |
|
881 |
+
| 0.6744 | 56200 | - |
|
882 |
+
| 0.6756 | 56300 | - |
|
883 |
+
| 0.6768 | 56400 | - |
|
884 |
+
| 0.6780 | 56500 | 0.1211 |
|
885 |
+
| 0.6792 | 56600 | - |
|
886 |
+
| 0.6804 | 56700 | - |
|
887 |
+
| 0.6816 | 56800 | - |
|
888 |
+
| 0.6828 | 56900 | - |
|
889 |
+
| 0.6840 | 57000 | 0.1123 |
|
890 |
+
| 0.6852 | 57100 | - |
|
891 |
+
| 0.6864 | 57200 | - |
|
892 |
+
| 0.6876 | 57300 | - |
|
893 |
+
| 0.6888 | 57400 | - |
|
894 |
+
| 0.6900 | 57500 | 0.1071 |
|
895 |
+
| 0.6912 | 57600 | - |
|
896 |
+
| 0.6924 | 57700 | - |
|
897 |
+
| 0.6936 | 57800 | - |
|
898 |
+
| 0.6948 | 57900 | - |
|
899 |
+
| 0.6960 | 58000 | 0.112 |
|
900 |
+
| 0.6972 | 58100 | - |
|
901 |
+
| 0.6984 | 58200 | - |
|
902 |
+
| 0.6996 | 58300 | - |
|
903 |
+
| 0.7008 | 58400 | - |
|
904 |
+
| 0.7020 | 58500 | 0.1038 |
|
905 |
+
| 0.7032 | 58600 | - |
|
906 |
+
| 0.7044 | 58700 | - |
|
907 |
+
| 0.7056 | 58800 | - |
|
908 |
+
| 0.7068 | 58900 | - |
|
909 |
+
| 0.7080 | 59000 | 0.1238 |
|
910 |
+
| 0.7092 | 59100 | - |
|
911 |
+
| 0.7104 | 59200 | - |
|
912 |
+
| 0.7116 | 59300 | - |
|
913 |
+
| 0.7128 | 59400 | - |
|
914 |
+
| 0.7140 | 59500 | 0.1001 |
|
915 |
+
| 0.7152 | 59600 | - |
|
916 |
+
| 0.7164 | 59700 | - |
|
917 |
+
| 0.7176 | 59800 | - |
|
918 |
+
| 0.7188 | 59900 | - |
|
919 |
+
| 0.7200 | 60000 | 0.0948 |
|
920 |
+
| 0.7212 | 60100 | - |
|
921 |
+
| 0.7224 | 60200 | - |
|
922 |
+
| 0.7236 | 60300 | - |
|
923 |
+
| 0.7248 | 60400 | - |
|
924 |
+
| 0.7260 | 60500 | 0.1271 |
|
925 |
+
| 0.7272 | 60600 | - |
|
926 |
+
| 0.7284 | 60700 | - |
|
927 |
+
| 0.7296 | 60800 | - |
|
928 |
+
| 0.7308 | 60900 | - |
|
929 |
+
| 0.7320 | 61000 | 0.1117 |
|
930 |
+
| 0.7332 | 61100 | - |
|
931 |
+
| 0.7344 | 61200 | - |
|
932 |
+
| 0.7356 | 61300 | - |
|
933 |
+
| 0.7368 | 61400 | - |
|
934 |
+
| 0.7380 | 61500 | 0.1122 |
|
935 |
+
| 0.7392 | 61600 | - |
|
936 |
+
| 0.7404 | 61700 | - |
|
937 |
+
| 0.7416 | 61800 | - |
|
938 |
+
| 0.7428 | 61900 | - |
|
939 |
+
| 0.7440 | 62000 | 0.0972 |
|
940 |
+
| 0.7452 | 62100 | - |
|
941 |
+
| 0.7464 | 62200 | - |
|
942 |
+
| 0.7476 | 62300 | - |
|
943 |
+
| 0.7488 | 62400 | - |
|
944 |
+
| 0.7500 | 62500 | 0.1135 |
|
945 |
+
| 0.7512 | 62600 | - |
|
946 |
+
| 0.7524 | 62700 | - |
|
947 |
+
| 0.7536 | 62800 | - |
|
948 |
+
| 0.7548 | 62900 | - |
|
949 |
+
| 0.7560 | 63000 | 0.1092 |
|
950 |
+
| 0.7572 | 63100 | - |
|
951 |
+
| 0.7584 | 63200 | - |
|
952 |
+
| 0.7596 | 63300 | - |
|
953 |
+
| 0.7608 | 63400 | - |
|
954 |
+
| 0.7620 | 63500 | 0.1155 |
|
955 |
+
| 0.7632 | 63600 | - |
|
956 |
+
| 0.7644 | 63700 | - |
|
957 |
+
| 0.7656 | 63800 | - |
|
958 |
+
| 0.7668 | 63900 | - |
|
959 |
+
| 0.7680 | 64000 | 0.1065 |
|
960 |
+
| 0.7692 | 64100 | - |
|
961 |
+
| 0.7704 | 64200 | - |
|
962 |
+
| 0.7716 | 64300 | - |
|
963 |
+
| 0.7728 | 64400 | - |
|
964 |
+
| 0.7740 | 64500 | 0.1211 |
|
965 |
+
| 0.7752 | 64600 | - |
|
966 |
+
| 0.7764 | 64700 | - |
|
967 |
+
| 0.7776 | 64800 | - |
|
968 |
+
| 0.7788 | 64900 | - |
|
969 |
+
| 0.7800 | 65000 | 0.116 |
|
970 |
+
| 0.7812 | 65100 | - |
|
971 |
+
| 0.7824 | 65200 | - |
|
972 |
+
| 0.7836 | 65300 | - |
|
973 |
+
| 0.7848 | 65400 | - |
|
974 |
+
| 0.7860 | 65500 | 0.1138 |
|
975 |
+
| 0.7872 | 65600 | - |
|
976 |
+
| 0.7884 | 65700 | - |
|
977 |
+
| 0.7896 | 65800 | - |
|
978 |
+
| 0.7908 | 65900 | - |
|
979 |
+
| 0.7920 | 66000 | 0.1155 |
|
980 |
+
| 0.7932 | 66100 | - |
|
981 |
+
| 0.7944 | 66200 | - |
|
982 |
+
| 0.7956 | 66300 | - |
|
983 |
+
| 0.7968 | 66400 | - |
|
984 |
+
| 0.7980 | 66500 | 0.1059 |
|
985 |
+
| 0.7992 | 66600 | - |
|
986 |
+
| 0.8004 | 66700 | - |
|
987 |
+
| 0.8016 | 66800 | - |
|
988 |
+
| 0.8028 | 66900 | - |
|
989 |
+
| 0.8040 | 67000 | 0.1189 |
|
990 |
+
| 0.8052 | 67100 | - |
|
991 |
+
| 0.8064 | 67200 | - |
|
992 |
+
| 0.8076 | 67300 | - |
|
993 |
+
| 0.8088 | 67400 | - |
|
994 |
+
| 0.8100 | 67500 | 0.1089 |
|
995 |
+
| 0.8112 | 67600 | - |
|
996 |
+
| 0.8124 | 67700 | - |
|
997 |
+
| 0.8136 | 67800 | - |
|
998 |
+
| 0.8148 | 67900 | - |
|
999 |
+
| 0.8160 | 68000 | 0.1016 |
|
1000 |
+
| 0.8172 | 68100 | - |
|
1001 |
+
| 0.8184 | 68200 | - |
|
1002 |
+
| 0.8196 | 68300 | - |
|
1003 |
+
| 0.8208 | 68400 | - |
|
1004 |
+
| 0.8220 | 68500 | 0.121 |
|
1005 |
+
| 0.8232 | 68600 | - |
|
1006 |
+
| 0.8244 | 68700 | - |
|
1007 |
+
| 0.8256 | 68800 | - |
|
1008 |
+
| 0.8268 | 68900 | - |
|
1009 |
+
| 0.8280 | 69000 | 0.1185 |
|
1010 |
+
| 0.8292 | 69100 | - |
|
1011 |
+
| 0.8304 | 69200 | - |
|
1012 |
+
| 0.8316 | 69300 | - |
|
1013 |
+
| 0.8328 | 69400 | - |
|
1014 |
+
| 0.8340 | 69500 | 0.1026 |
|
1015 |
+
| 0.8352 | 69600 | - |
|
1016 |
+
| 0.8364 | 69700 | - |
|
1017 |
+
| 0.8376 | 69800 | - |
|
1018 |
+
| 0.8388 | 69900 | - |
|
1019 |
+
| 0.8400 | 70000 | 0.1209 |
|
1020 |
+
| 0.8412 | 70100 | - |
|
1021 |
+
| 0.8424 | 70200 | - |
|
1022 |
+
| 0.8436 | 70300 | - |
|
1023 |
+
| 0.8448 | 70400 | - |
|
1024 |
+
| 0.8460 | 70500 | 0.1103 |
|
1025 |
+
| 0.8472 | 70600 | - |
|
1026 |
+
| 0.8484 | 70700 | - |
|
1027 |
+
| 0.8496 | 70800 | - |
|
1028 |
+
| 0.8508 | 70900 | - |
|
1029 |
+
| 0.8520 | 71000 | 0.1098 |
|
1030 |
+
| 0.8532 | 71100 | - |
|
1031 |
+
| 0.8544 | 71200 | - |
|
1032 |
+
| 0.8556 | 71300 | - |
|
1033 |
+
| 0.8568 | 71400 | - |
|
1034 |
+
| 0.8580 | 71500 | 0.1055 |
|
1035 |
+
| 0.8592 | 71600 | - |
|
1036 |
+
| 0.8604 | 71700 | - |
|
1037 |
+
| 0.8616 | 71800 | - |
|
1038 |
+
| 0.8628 | 71900 | - |
|
1039 |
+
| 0.8640 | 72000 | 0.1045 |
|
1040 |
+
| 0.8652 | 72100 | - |
|
1041 |
+
| 0.8664 | 72200 | - |
|
1042 |
+
| 0.8676 | 72300 | - |
|
1043 |
+
| 0.8688 | 72400 | - |
|
1044 |
+
| 0.8700 | 72500 | 0.1126 |
|
1045 |
+
| 0.8712 | 72600 | - |
|
1046 |
+
| 0.8724 | 72700 | - |
|
1047 |
+
| 0.8736 | 72800 | - |
|
1048 |
+
| 0.8748 | 72900 | - |
|
1049 |
+
| 0.8760 | 73000 | 0.1058 |
|
1050 |
+
| 0.8772 | 73100 | - |
|
1051 |
+
| 0.8784 | 73200 | - |
|
1052 |
+
| 0.8796 | 73300 | - |
|
1053 |
+
| 0.8808 | 73400 | - |
|
1054 |
+
| 0.8820 | 73500 | 0.1138 |
|
1055 |
+
| 0.8832 | 73600 | - |
|
1056 |
+
| 0.8844 | 73700 | - |
|
1057 |
+
| 0.8856 | 73800 | - |
|
1058 |
+
| 0.8868 | 73900 | - |
|
1059 |
+
| 0.8880 | 74000 | 0.1071 |
|
1060 |
+
| 0.8892 | 74100 | - |
|
1061 |
+
| 0.8904 | 74200 | - |
|
1062 |
+
| 0.8916 | 74300 | - |
|
1063 |
+
| 0.8928 | 74400 | - |
|
1064 |
+
| 0.8940 | 74500 | 0.1091 |
|
1065 |
+
| 0.8952 | 74600 | - |
|
1066 |
+
| 0.8964 | 74700 | - |
|
1067 |
+
| 0.8976 | 74800 | - |
|
1068 |
+
| 0.8988 | 74900 | - |
|
1069 |
+
| 0.9000 | 75000 | 0.1143 |
|
1070 |
+
| 0.9012 | 75100 | - |
|
1071 |
+
| 0.9024 | 75200 | - |
|
1072 |
+
|
1073 |
+
</details>
|
1074 |
+
|
1075 |
+
### Framework Versions
|
1076 |
+
- Python: 3.12.10
|
1077 |
+
- Sentence Transformers: 4.1.0
|
1078 |
+
- Transformers: 4.51.3
|
1079 |
+
- PyTorch: 2.6.0+cu124
|
1080 |
+
- Accelerate: 1.8.1
|
1081 |
+
- Datasets: 3.6.0
|
1082 |
+
- Tokenizers: 0.21.1
|
1083 |
+
|
1084 |
+
## Citation
|
1085 |
+
|
1086 |
+
### BibTeX
|
1087 |
+
|
1088 |
+
#### Sentence Transformers
|
1089 |
+
```bibtex
|
1090 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1091 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1092 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1093 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1094 |
+
month = "11",
|
1095 |
+
year = "2019",
|
1096 |
+
publisher = "Association for Computational Linguistics",
|
1097 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1098 |
+
}
|
1099 |
+
```
|
1100 |
+
|
1101 |
+
#### MultipleNegativesRankingLoss
|
1102 |
+
```bibtex
|
1103 |
+
@misc{henderson2017efficient,
|
1104 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1105 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1106 |
+
year={2017},
|
1107 |
+
eprint={1705.00652},
|
1108 |
+
archivePrefix={arXiv},
|
1109 |
+
primaryClass={cs.CL}
|
1110 |
+
}
|
1111 |
+
```
|
1112 |
+
|
1113 |
+
<!--
|
1114 |
+
## Glossary
|
1115 |
+
|
1116 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1117 |
+
-->
|
1118 |
+
|
1119 |
+
<!--
|
1120 |
+
## Model Card Authors
|
1121 |
+
|
1122 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1123 |
+
-->
|
1124 |
+
|
1125 |
+
<!--
|
1126 |
+
## Model Card Contact
|
1127 |
+
|
1128 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1129 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.51.3",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 501153
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215a4e2edc994b0f8f664933498def03d92e377f6f4468791a7f18e951cc1fb1
|
3 |
+
size 1883730160
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
|
3 |
+
size 13632172
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"full_tokenizer_file": null,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 256,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "BertTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|