--- base_model: sm54/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-32B library_name: mlx tags: - mergekit - merge - mlx pipeline_tag: text-generation --- # litmudoc/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-MLX-Q8 This model [litmudoc/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-MLX-Q8](https://huggingface.co/litmudoc/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-MLX-Q8) was converted to MLX format from [sm54/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-32B](https://huggingface.co/sm54/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-32B) using mlx-lm version **0.22.2**. ## GGUF conversion MLX ```bash pip install mlx mlx-lm mlx_lm.convert --hf-path sm54/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-32B -q --q-bits 8 --upload-repo litmudoc/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-MLX-Q8 ``` ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("litmudoc/QwQ-DeepSeek-R1-SkyT1-Flash-Lightest-MLX-Q8") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```