lixiqi commited on
Commit
f4d4784
·
1 Parent(s): 2ad8256

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
- value: 0.6819923371647509
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
31
  It achieves the following results on the evaluation set:
32
- - Loss: 0.8754
33
- - Accuracy: 0.6820
34
 
35
  ## Model description
36
 
@@ -58,15 +58,16 @@ The following hyperparameters were used during training:
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_ratio: 0.1
61
- - num_epochs: 3
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
- | 1.1701 | 1.0 | 202 | 1.0163 | 0.6179 |
68
- | 1.0447 | 2.0 | 404 | 0.9237 | 0.6569 |
69
- | 0.9712 | 3.0 | 606 | 0.8754 | 0.6820 |
 
70
 
71
 
72
  ### Framework versions
 
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
+ value: 0.6879136189481017
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 0.8504
33
+ - Accuracy: 0.6879
34
 
35
  ## Model description
36
 
 
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 4
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.1617 | 1.0 | 202 | 1.0081 | 0.6270 |
68
+ | 1.0604 | 2.0 | 404 | 0.9516 | 0.6524 |
69
+ | 0.998 | 3.0 | 606 | 0.8857 | 0.6809 |
70
+ | 0.9971 | 4.0 | 808 | 0.8504 | 0.6879 |
71
 
72
 
73
  ### Framework versions