update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Wer
|
24 |
type: wer
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Wer: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,7 +61,7 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 500
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
@@ -72,6 +72,18 @@ The following hyperparameters were used during training:
|
|
72 |
| 1.7606 | 15.58 | 600 | 1.1942 | 0.8532 |
|
73 |
| 1.0549 | 20.78 | 800 | 1.1132 | 0.7788 |
|
74 |
| 0.7553 | 25.97 | 1000 | 1.1224 | 0.6899 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Wer
|
24 |
type: wer
|
25 |
+
value: 0.6465189873417722
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7535
|
36 |
+
- Wer: 0.6465
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 500
|
64 |
+
- num_epochs: 90
|
65 |
|
66 |
### Training results
|
67 |
|
|
|
72 |
| 1.7606 | 15.58 | 600 | 1.1942 | 0.8532 |
|
73 |
| 1.0549 | 20.78 | 800 | 1.1132 | 0.7788 |
|
74 |
| 0.7553 | 25.97 | 1000 | 1.1224 | 0.6899 |
|
75 |
+
| 0.6639 | 31.51 | 1200 | 1.2641 | 0.7082 |
|
76 |
+
| 0.5344 | 36.7 | 1400 | 1.3247 | 0.6835 |
|
77 |
+
| 0.4527 | 41.9 | 1600 | 1.3915 | 0.7022 |
|
78 |
+
| 0.3839 | 47.09 | 1800 | 1.4051 | 0.6791 |
|
79 |
+
| 0.3065 | 52.29 | 2000 | 1.3899 | 0.6706 |
|
80 |
+
| 0.2714 | 57.48 | 2200 | 1.5455 | 0.6573 |
|
81 |
+
| 0.2437 | 62.68 | 2400 | 1.6798 | 0.6601 |
|
82 |
+
| 0.2103 | 67.87 | 2600 | 1.7406 | 0.6674 |
|
83 |
+
| 0.1899 | 73.06 | 2800 | 1.7625 | 0.6522 |
|
84 |
+
| 0.1841 | 78.26 | 3000 | 1.7443 | 0.6535 |
|
85 |
+
| 0.1544 | 83.45 | 3200 | 1.7405 | 0.6465 |
|
86 |
+
| 0.1461 | 88.65 | 3400 | 1.7535 | 0.6465 |
|
87 |
|
88 |
|
89 |
### Framework versions
|