Upload folder using huggingface_hub
Browse files- README.md +73 -0
- config.json +370 -0
- configuration_llama_moe.py +124 -0
- generation_config.json +7 -0
- latest +1 -0
- modeling_llama_moe_hf.py +1664 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +23 -0
- tokenizer.model +3 -0
- tokenizer_config.json +36 -0
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LLaMA-MoE-v1-3.5B (2/8)
|
| 2 |
+
|
| 3 |
+
[[💻 Code]](https://github.com/pjlab-sys4nlp/llama-moe) | [[📜 Technical Report]]()
|
| 4 |
+
|
| 5 |
+
👋 Very nice to meet you here~
|
| 6 |
+
|
| 7 |
+
❤️ This repo contains the model `LLaMA-MoE-v1-3.5B (2/8)`, which activates 2 out of 8 experts (3.5B parameters).
|
| 8 |
+
This model is NOT fine-tuned by instruction pairs, so it may not be good enough to act like a chatbot.
|
| 9 |
+
|
| 10 |
+
📢 LLaMA-MoE is a series of Mixture-of-Expert (MoE) models based on [LLaMA-2](https://huggingface.co/meta-llama/Llama-2-7b-hf).
|
| 11 |
+
You can find the code for training this model at [this repo](https://github.com/pjlab-sys4nlp/llama-moe).
|
| 12 |
+
|
| 13 |
+
💎 This series of models are obtained by partitioning original LLaMA FFNs into experts and further continual pre-training.
|
| 14 |
+
The total model size is only 6.7B parameters, which is very convenient for deployment and research usage.
|
| 15 |
+
More details could be found at [our technical report](https://arxiv.org/).
|
| 16 |
+
|
| 17 |
+
## 🚀 QuickStart
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
import torch
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 22 |
+
|
| 23 |
+
model_dir = "llama-moe/LLaMA-MoE-v1-3_5B-2_8"
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 26 |
+
model.eval()
|
| 27 |
+
model.to("cuda:0")
|
| 28 |
+
|
| 29 |
+
input_text = "Suzhou is famous of"
|
| 30 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 31 |
+
inputs = inputs.to("cuda:0")
|
| 32 |
+
|
| 33 |
+
pred = model.generate(**inputs, max_length=50, temperature=0.0)
|
| 34 |
+
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
| 35 |
+
# Suzhou is famous of its beautiful gardens. The most famous one is the Humble Administrator's Garden. It is a classical Chinese garden with a history of more than 600 years. The garden is divided into three
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## 📊 Performance
|
| 39 |
+
|
| 40 |
+
| Model | \#Activated Experts | \#Experts | \#Activated Params | Links |
|
| 41 |
+
| :------------------------ | :-----------------: | :-------: | :----------------: | :-----------------------------------------------------------------------: |
|
| 42 |
+
| **LLaMA-MoE-3.0B** | 2 | 16 | 3.0B | [[🤗 HF Weights]](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_0B-2_16) |
|
| 43 |
+
| **LLaMA-MoE-3.5B (4/16)** | 4 | 16 | 3.5B | [[🤗 HF Weights]](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16) |
|
| 44 |
+
| **LLaMA-MoE-3.5B (2/8)** | 2 | 8 | 3.5B | [[🤗 HF Weights]](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8) |
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
| Model | SciQ | PIQA | WinoGrande | ARC-e | ARC-c (25) | HellaSwag (10) | LogiQA | BoolQ (32) | LAMBADA | NQ (32) | MMNLU (5) | Average |
|
| 48 |
+
| :------------------------------------------------------------------------------------ | :------: | :------: | :--------: | :------: | :--------: | :------------: | :------: | :--------: | :------: | :------: | :-------: | :-----: |
|
| 49 |
+
| [OPT-2.7B](https://huggingface.co/facebook/opt-2.7b) | 78.9 | 74.8 | 60.8 | 54.4 | 34.0 | 61.4 | 25.8 | 63.3 | 63.6 | 10.7 | 25.8 | 50.3 |
|
| 50 |
+
| [Pythia-2.8B](https://huggingface.co/EleutherAI/pythia-2.8b) | 83.2 | 73.6 | 59.6 | 58.8 | 36.7 | 60.7 | 28.1 | 65.9 | 64.6 | 8.7 | 26.8 | 51.5 |
|
| 51 |
+
| [INCITE-BASE-3B](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1) | 85.6 | 73.9 | 63.5 | 61.7 | 40.3 | 64.7 | 27.5 | 65.8 | 65.4 | 15.2 | 27.2 | 53.7 |
|
| 52 |
+
| [Open-LLaMA-3B-v2](https://huggingface.co/openlm-research/open_llama_3b_v2) | 88.0 | 77.9 | 63.1 | 63.3 | 40.1 | 71.4 | 28.1 | 69.2 | 67.4 | 16.0 | 26.8 | 55.6 |
|
| 53 |
+
| [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) | 87.5 | 76.9 | 65.0 | 63.3 | 41.6 | 71.0 | 28.3 | 73.6 | 68.3 | 17.6 | **27.3** | 56.4 |
|
| 54 |
+
| **LLaMA-MoE-3.0B** | 84.2 | 77.5 | 63.6 | 60.2 | 40.9 | 70.8 | **30.6** | 71.9 | 66.6 | 17.0 | 26.8 | 55.5 |
|
| 55 |
+
| **LLaMA-MoE-3.5B (4/16)** | 87.6 | **77.9** | 65.5 | **65.6** | **44.2** | **73.3** | 29.7 | **75.0** | **69.5** | **20.3** | 26.8 | 57.7 |
|
| 56 |
+
| **LLaMA-MoE-3.5B (2/8)** | **88.4** | 77.6 | **66.7** | 65.3 | 43.1 | **73.3** | 29.6 | 73.9 | 69.4 | 19.8 | 27.0 | 57.6 |
|
| 57 |
+
|
| 58 |
+
## 📖 Details
|
| 59 |
+
|
| 60 |
+
Training Data: 200B tokens from [SlimPajama](https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama) with the same data sampling weights as [Sheared LLaMA](https://arxiv.org/abs/2310.06694).
|
| 61 |
+
|
| 62 |
+
## 📃 Citation
|
| 63 |
+
|
| 64 |
+
```bibtex
|
| 65 |
+
@article{llama-moe,
|
| 66 |
+
title={LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training},
|
| 67 |
+
author={LLaMA-MoE Team},
|
| 68 |
+
journal={arXiv},
|
| 69 |
+
year={2023},
|
| 70 |
+
volume={abs/},
|
| 71 |
+
url={https://arxiv.org}
|
| 72 |
+
}
|
| 73 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "llama-moe/LLaMA-MoE-v1-3_5B-2_8",
|
| 3 |
+
"add_weight_norm": false,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"LlamaMoEForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_llama_moe.LlamaMoEConfig",
|
| 9 |
+
"AutoModel": "modeling_llama_moe_hf.LlamaMoEModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_llama_moe_hf.LlamaMoEForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"calculator_type": "UniversalCalculator",
|
| 14 |
+
"capacity_factor": 1.25,
|
| 15 |
+
"drop_tokens": true,
|
| 16 |
+
"dropped_padding": "zero",
|
| 17 |
+
"eos_token_id": 2,
|
| 18 |
+
"gate_add_noise": true,
|
| 19 |
+
"gate_balance_loss_weight": 0.01,
|
| 20 |
+
"gate_network": "mlp",
|
| 21 |
+
"gate_noise_epsilon": 0.01,
|
| 22 |
+
"gate_type": "TopKBalancedNoisyGate",
|
| 23 |
+
"gate_use_balance": true,
|
| 24 |
+
"gate_use_softmax": true,
|
| 25 |
+
"gates": "mlp",
|
| 26 |
+
"hidden_act": "silu",
|
| 27 |
+
"hidden_size": 4096,
|
| 28 |
+
"initializer_range": 0.02,
|
| 29 |
+
"intermediate_size": 11008,
|
| 30 |
+
"max_position_embeddings": 4096,
|
| 31 |
+
"model_type": "llama_moe",
|
| 32 |
+
"multiply_gate_scores": true,
|
| 33 |
+
"num_attention_heads": 32,
|
| 34 |
+
"num_experts": 8,
|
| 35 |
+
"num_hidden_layers": 32,
|
| 36 |
+
"num_key_value_heads": 32,
|
| 37 |
+
"num_selects": 2,
|
| 38 |
+
"pad_token_id": 0,
|
| 39 |
+
"pretraining_tp": 1,
|
| 40 |
+
"rms_norm_eps": 1e-05,
|
| 41 |
+
"rope_scaling": null,
|
| 42 |
+
"score_scale_factor": 4.0,
|
| 43 |
+
"size_experts": [
|
| 44 |
+
[
|
| 45 |
+
1376,
|
| 46 |
+
1376,
|
| 47 |
+
1376,
|
| 48 |
+
1376,
|
| 49 |
+
1376,
|
| 50 |
+
1376,
|
| 51 |
+
1376,
|
| 52 |
+
1376
|
| 53 |
+
],
|
| 54 |
+
[
|
| 55 |
+
1376,
|
| 56 |
+
1376,
|
| 57 |
+
1376,
|
| 58 |
+
1376,
|
| 59 |
+
1376,
|
| 60 |
+
1376,
|
| 61 |
+
1376,
|
| 62 |
+
1376
|
| 63 |
+
],
|
| 64 |
+
[
|
| 65 |
+
1376,
|
| 66 |
+
1376,
|
| 67 |
+
1376,
|
| 68 |
+
1376,
|
| 69 |
+
1376,
|
| 70 |
+
1376,
|
| 71 |
+
1376,
|
| 72 |
+
1376
|
| 73 |
+
],
|
| 74 |
+
[
|
| 75 |
+
1376,
|
| 76 |
+
1376,
|
| 77 |
+
1376,
|
| 78 |
+
1376,
|
| 79 |
+
1376,
|
| 80 |
+
1376,
|
| 81 |
+
1376,
|
| 82 |
+
1376
|
| 83 |
+
],
|
| 84 |
+
[
|
| 85 |
+
1376,
|
| 86 |
+
1376,
|
| 87 |
+
1376,
|
| 88 |
+
1376,
|
| 89 |
+
1376,
|
| 90 |
+
1376,
|
| 91 |
+
1376,
|
| 92 |
+
1376
|
| 93 |
+
],
|
| 94 |
+
[
|
| 95 |
+
1376,
|
| 96 |
+
1376,
|
| 97 |
+
1376,
|
| 98 |
+
1376,
|
| 99 |
+
1376,
|
| 100 |
+
1376,
|
| 101 |
+
1376,
|
| 102 |
+
1376
|
| 103 |
+
],
|
| 104 |
+
[
|
| 105 |
+
1376,
|
| 106 |
+
1376,
|
| 107 |
+
1376,
|
| 108 |
+
1376,
|
| 109 |
+
1376,
|
| 110 |
+
1376,
|
| 111 |
+
1376,
|
| 112 |
+
1376
|
| 113 |
+
],
|
| 114 |
+
[
|
| 115 |
+
1376,
|
| 116 |
+
1376,
|
| 117 |
+
1376,
|
| 118 |
+
1376,
|
| 119 |
+
1376,
|
| 120 |
+
1376,
|
| 121 |
+
1376,
|
| 122 |
+
1376
|
| 123 |
+
],
|
| 124 |
+
[
|
| 125 |
+
1376,
|
| 126 |
+
1376,
|
| 127 |
+
1376,
|
| 128 |
+
1376,
|
| 129 |
+
1376,
|
| 130 |
+
1376,
|
| 131 |
+
1376,
|
| 132 |
+
1376
|
| 133 |
+
],
|
| 134 |
+
[
|
| 135 |
+
1376,
|
| 136 |
+
1376,
|
| 137 |
+
1376,
|
| 138 |
+
1376,
|
| 139 |
+
1376,
|
| 140 |
+
1376,
|
| 141 |
+
1376,
|
| 142 |
+
1376
|
| 143 |
+
],
|
| 144 |
+
[
|
| 145 |
+
1376,
|
| 146 |
+
1376,
|
| 147 |
+
1376,
|
| 148 |
+
1376,
|
| 149 |
+
1376,
|
| 150 |
+
1376,
|
| 151 |
+
1376,
|
| 152 |
+
1376
|
| 153 |
+
],
|
| 154 |
+
[
|
| 155 |
+
1376,
|
| 156 |
+
1376,
|
| 157 |
+
1376,
|
| 158 |
+
1376,
|
| 159 |
+
1376,
|
| 160 |
+
1376,
|
| 161 |
+
1376,
|
| 162 |
+
1376
|
| 163 |
+
],
|
| 164 |
+
[
|
| 165 |
+
1376,
|
| 166 |
+
1376,
|
| 167 |
+
1376,
|
| 168 |
+
1376,
|
| 169 |
+
1376,
|
| 170 |
+
1376,
|
| 171 |
+
1376,
|
| 172 |
+
1376
|
| 173 |
+
],
|
| 174 |
+
[
|
| 175 |
+
1376,
|
| 176 |
+
1376,
|
| 177 |
+
1376,
|
| 178 |
+
1376,
|
| 179 |
+
1376,
|
| 180 |
+
1376,
|
| 181 |
+
1376,
|
| 182 |
+
1376
|
| 183 |
+
],
|
| 184 |
+
[
|
| 185 |
+
1376,
|
| 186 |
+
1376,
|
| 187 |
+
1376,
|
| 188 |
+
1376,
|
| 189 |
+
1376,
|
| 190 |
+
1376,
|
| 191 |
+
1376,
|
| 192 |
+
1376
|
| 193 |
+
],
|
| 194 |
+
[
|
| 195 |
+
1376,
|
| 196 |
+
1376,
|
| 197 |
+
1376,
|
| 198 |
+
1376,
|
| 199 |
+
1376,
|
| 200 |
+
1376,
|
| 201 |
+
1376,
|
| 202 |
+
1376
|
| 203 |
+
],
|
| 204 |
+
[
|
| 205 |
+
1376,
|
| 206 |
+
1376,
|
| 207 |
+
1376,
|
| 208 |
+
1376,
|
| 209 |
+
1376,
|
| 210 |
+
1376,
|
| 211 |
+
1376,
|
| 212 |
+
1376
|
| 213 |
+
],
|
| 214 |
+
[
|
| 215 |
+
1376,
|
| 216 |
+
1376,
|
| 217 |
+
1376,
|
| 218 |
+
1376,
|
| 219 |
+
1376,
|
| 220 |
+
1376,
|
| 221 |
+
1376,
|
| 222 |
+
1376
|
| 223 |
+
],
|
| 224 |
+
[
|
| 225 |
+
1376,
|
| 226 |
+
1376,
|
| 227 |
+
1376,
|
| 228 |
+
1376,
|
| 229 |
+
1376,
|
| 230 |
+
1376,
|
| 231 |
+
1376,
|
| 232 |
+
1376
|
| 233 |
+
],
|
| 234 |
+
[
|
| 235 |
+
1376,
|
| 236 |
+
1376,
|
| 237 |
+
1376,
|
| 238 |
+
1376,
|
| 239 |
+
1376,
|
| 240 |
+
1376,
|
| 241 |
+
1376,
|
| 242 |
+
1376
|
| 243 |
+
],
|
| 244 |
+
[
|
| 245 |
+
1376,
|
| 246 |
+
1376,
|
| 247 |
+
1376,
|
| 248 |
+
1376,
|
| 249 |
+
1376,
|
| 250 |
+
1376,
|
| 251 |
+
1376,
|
| 252 |
+
1376
|
| 253 |
+
],
|
| 254 |
+
[
|
| 255 |
+
1376,
|
| 256 |
+
1376,
|
| 257 |
+
1376,
|
| 258 |
+
1376,
|
| 259 |
+
1376,
|
| 260 |
+
1376,
|
| 261 |
+
1376,
|
| 262 |
+
1376
|
| 263 |
+
],
|
| 264 |
+
[
|
| 265 |
+
1376,
|
| 266 |
+
1376,
|
| 267 |
+
1376,
|
| 268 |
+
1376,
|
| 269 |
+
1376,
|
| 270 |
+
1376,
|
| 271 |
+
1376,
|
| 272 |
+
1376
|
| 273 |
+
],
|
| 274 |
+
[
|
| 275 |
+
1376,
|
| 276 |
+
1376,
|
| 277 |
+
1376,
|
| 278 |
+
1376,
|
| 279 |
+
1376,
|
| 280 |
+
1376,
|
| 281 |
+
1376,
|
| 282 |
+
1376
|
| 283 |
+
],
|
| 284 |
+
[
|
| 285 |
+
1376,
|
| 286 |
+
1376,
|
| 287 |
+
1376,
|
| 288 |
+
1376,
|
| 289 |
+
1376,
|
| 290 |
+
1376,
|
| 291 |
+
1376,
|
| 292 |
+
1376
|
| 293 |
+
],
|
| 294 |
+
[
|
| 295 |
+
1376,
|
| 296 |
+
1376,
|
| 297 |
+
1376,
|
| 298 |
+
1376,
|
| 299 |
+
1376,
|
| 300 |
+
1376,
|
| 301 |
+
1376,
|
| 302 |
+
1376
|
| 303 |
+
],
|
| 304 |
+
[
|
| 305 |
+
1376,
|
| 306 |
+
1376,
|
| 307 |
+
1376,
|
| 308 |
+
1376,
|
| 309 |
+
1376,
|
| 310 |
+
1376,
|
| 311 |
+
1376,
|
| 312 |
+
1376
|
| 313 |
+
],
|
| 314 |
+
[
|
| 315 |
+
1376,
|
| 316 |
+
1376,
|
| 317 |
+
1376,
|
| 318 |
+
1376,
|
| 319 |
+
1376,
|
| 320 |
+
1376,
|
| 321 |
+
1376,
|
| 322 |
+
1376
|
| 323 |
+
],
|
| 324 |
+
[
|
| 325 |
+
1376,
|
| 326 |
+
1376,
|
| 327 |
+
1376,
|
| 328 |
+
1376,
|
| 329 |
+
1376,
|
| 330 |
+
1376,
|
| 331 |
+
1376,
|
| 332 |
+
1376
|
| 333 |
+
],
|
| 334 |
+
[
|
| 335 |
+
1376,
|
| 336 |
+
1376,
|
| 337 |
+
1376,
|
| 338 |
+
1376,
|
| 339 |
+
1376,
|
| 340 |
+
1376,
|
| 341 |
+
1376,
|
| 342 |
+
1376
|
| 343 |
+
],
|
| 344 |
+
[
|
| 345 |
+
1376,
|
| 346 |
+
1376,
|
| 347 |
+
1376,
|
| 348 |
+
1376,
|
| 349 |
+
1376,
|
| 350 |
+
1376,
|
| 351 |
+
1376,
|
| 352 |
+
1376
|
| 353 |
+
],
|
| 354 |
+
[
|
| 355 |
+
1376,
|
| 356 |
+
1376,
|
| 357 |
+
1376,
|
| 358 |
+
1376,
|
| 359 |
+
1376,
|
| 360 |
+
1376,
|
| 361 |
+
1376,
|
| 362 |
+
1376
|
| 363 |
+
]
|
| 364 |
+
],
|
| 365 |
+
"tie_word_embeddings": false,
|
| 366 |
+
"torch_dtype": "bfloat16",
|
| 367 |
+
"transformers_version": "4.31.0",
|
| 368 |
+
"use_cache": true,
|
| 369 |
+
"vocab_size": 32000
|
| 370 |
+
}
|
configuration_llama_moe.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LlamaMoEConfig(PretrainedConfig):
|
| 5 |
+
model_type = "llama_moe"
|
| 6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=32000,
|
| 11 |
+
hidden_size=4096,
|
| 12 |
+
intermediate_size=11008,
|
| 13 |
+
num_hidden_layers=32,
|
| 14 |
+
num_attention_heads=32,
|
| 15 |
+
num_key_value_heads=None,
|
| 16 |
+
hidden_act="silu",
|
| 17 |
+
max_position_embeddings=2048,
|
| 18 |
+
initializer_range=0.02,
|
| 19 |
+
rms_norm_eps=1e-6,
|
| 20 |
+
use_cache=True,
|
| 21 |
+
pad_token_id=0,
|
| 22 |
+
bos_token_id=1,
|
| 23 |
+
eos_token_id=2,
|
| 24 |
+
pretraining_tp=1,
|
| 25 |
+
tie_word_embeddings=False,
|
| 26 |
+
rope_scaling=None,
|
| 27 |
+
# -------- moe expert configs --------
|
| 28 |
+
num_experts=16,
|
| 29 |
+
num_selects=4,
|
| 30 |
+
size_experts=None,
|
| 31 |
+
# -------- moe gate configs --------
|
| 32 |
+
gate_type="TopKBalancedNoisyGate",
|
| 33 |
+
gate_network="mlp",
|
| 34 |
+
gate_use_softmax=True,
|
| 35 |
+
gate_use_balance=True,
|
| 36 |
+
gate_balance_loss_weight=1e-2,
|
| 37 |
+
gate_add_noise=True,
|
| 38 |
+
# TopKBalancedNoisyGate
|
| 39 |
+
gate_noise_epsilon=1e-2,
|
| 40 |
+
# -------- moe calculator configs --------
|
| 41 |
+
calculator_type="UniversalCalculator",
|
| 42 |
+
multiply_gate_scores=True,
|
| 43 |
+
score_scale_factor=1.0,
|
| 44 |
+
add_weight_norm=False,
|
| 45 |
+
# SwitchDropTokenCalculator
|
| 46 |
+
drop_tokens=True,
|
| 47 |
+
dropped_padding="zero",
|
| 48 |
+
capacity_factor=1.25,
|
| 49 |
+
**kwargs,
|
| 50 |
+
):
|
| 51 |
+
self.vocab_size = vocab_size
|
| 52 |
+
self.max_position_embeddings = max_position_embeddings
|
| 53 |
+
self.hidden_size = hidden_size
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.num_hidden_layers = num_hidden_layers
|
| 56 |
+
self.num_attention_heads = num_attention_heads
|
| 57 |
+
self.hidden_act = hidden_act
|
| 58 |
+
self.initializer_range = initializer_range
|
| 59 |
+
self.rms_norm_eps = rms_norm_eps
|
| 60 |
+
self.pretraining_tp = pretraining_tp
|
| 61 |
+
self.use_cache = use_cache
|
| 62 |
+
self.rope_scaling = rope_scaling
|
| 63 |
+
self._rope_scaling_validation()
|
| 64 |
+
|
| 65 |
+
self.num_experts = num_experts
|
| 66 |
+
self.num_selects = num_selects
|
| 67 |
+
self.size_experts = size_experts
|
| 68 |
+
|
| 69 |
+
self.gate_type = gate_type
|
| 70 |
+
self.gate_network = gate_network
|
| 71 |
+
self.gate_use_softmax = gate_use_softmax
|
| 72 |
+
self.gate_use_balance = gate_use_balance
|
| 73 |
+
self.gate_balance_loss_weight = gate_balance_loss_weight
|
| 74 |
+
self.gate_add_noise = gate_add_noise
|
| 75 |
+
self.gate_noise_epsilon = gate_noise_epsilon
|
| 76 |
+
|
| 77 |
+
self.calculator_type = calculator_type
|
| 78 |
+
self.multiply_gate_scores = multiply_gate_scores
|
| 79 |
+
self.score_scale_factor = score_scale_factor
|
| 80 |
+
self.add_weight_norm = add_weight_norm
|
| 81 |
+
self.drop_tokens = drop_tokens
|
| 82 |
+
self.dropped_padding = dropped_padding
|
| 83 |
+
self.capacity_factor = capacity_factor
|
| 84 |
+
|
| 85 |
+
# for backward compatibility
|
| 86 |
+
if num_key_value_heads is None:
|
| 87 |
+
num_key_value_heads = num_attention_heads
|
| 88 |
+
|
| 89 |
+
self.num_key_value_heads = num_key_value_heads
|
| 90 |
+
|
| 91 |
+
super().__init__(
|
| 92 |
+
pad_token_id=pad_token_id,
|
| 93 |
+
bos_token_id=bos_token_id,
|
| 94 |
+
eos_token_id=eos_token_id,
|
| 95 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 96 |
+
**kwargs,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def _rope_scaling_validation(self):
|
| 100 |
+
"""
|
| 101 |
+
Validate the `rope_scaling` configuration.
|
| 102 |
+
"""
|
| 103 |
+
if self.rope_scaling is None:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 107 |
+
raise ValueError(
|
| 108 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
| 109 |
+
f"got {self.rope_scaling}"
|
| 110 |
+
)
|
| 111 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 112 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 113 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 114 |
+
raise ValueError(
|
| 115 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 116 |
+
)
|
| 117 |
+
if (
|
| 118 |
+
rope_scaling_factor is None
|
| 119 |
+
or not isinstance(rope_scaling_factor, float)
|
| 120 |
+
or rope_scaling_factor <= 1.0
|
| 121 |
+
):
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
|
| 124 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.31.0"
|
| 7 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step13600
|
modeling_llama_moe_hf.py
ADDED
|
@@ -0,0 +1,1664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from torch.distributions.normal import Normal
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
CausalLMOutputWithPast,
|
| 13 |
+
)
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.utils import ModelOutput, logging
|
| 17 |
+
|
| 18 |
+
from .configuration_llama_moe import LlamaMoEConfig
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
_CONFIG_FOR_DOC = "LlamaMoEConfig"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class CalculatorOutput(ModelOutput):
|
| 27 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
| 28 |
+
num_dropped_tokens: Optional[int] = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class BaseMoEModelOutputWithPast(ModelOutput):
|
| 33 |
+
"""
|
| 34 |
+
Args:
|
| 35 |
+
num_dropped_tokens: layer idx to the number of dropped tokens
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
last_hidden_state: torch.FloatTensor = None
|
| 39 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 40 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 41 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 42 |
+
balance_loss: Optional[float] = None
|
| 43 |
+
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
|
| 44 |
+
gate_load: Optional[Tuple[list]] = None
|
| 45 |
+
gate_importance: Optional[Tuple[list]] = None
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@dataclass
|
| 49 |
+
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
| 50 |
+
balance_loss: Optional[float] = None
|
| 51 |
+
num_dropped_tokens: Optional[Tuple[int]] = None
|
| 52 |
+
gate_load: Optional[Tuple[list[torch.Tensor]]] = None
|
| 53 |
+
gate_importance: Optional[Tuple[list[torch.Tensor]]] = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@dataclass
|
| 57 |
+
class MoEMlpOutput(ModelOutput):
|
| 58 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
| 59 |
+
balance_loss: Optional[torch.FloatTensor] = None
|
| 60 |
+
num_dropped_tokens: Optional[int] = None
|
| 61 |
+
gate_load: Optional[list] = None
|
| 62 |
+
gate_importance: Optional[list] = None
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _make_causal_mask(
|
| 66 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 67 |
+
):
|
| 68 |
+
"""
|
| 69 |
+
Make causal mask used for bi-directional self-attention.
|
| 70 |
+
"""
|
| 71 |
+
bsz, tgt_len = input_ids_shape
|
| 72 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 73 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 74 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 75 |
+
mask = mask.to(dtype)
|
| 76 |
+
|
| 77 |
+
if past_key_values_length > 0:
|
| 78 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 79 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 83 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 84 |
+
"""
|
| 85 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 86 |
+
"""
|
| 87 |
+
bsz, src_len = mask.size()
|
| 88 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 89 |
+
|
| 90 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 91 |
+
|
| 92 |
+
inverted_mask = 1.0 - expanded_mask
|
| 93 |
+
|
| 94 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class LlamaRMSNorm(nn.Module):
|
| 98 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 99 |
+
"""
|
| 100 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 101 |
+
"""
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 104 |
+
self.variance_epsilon = eps
|
| 105 |
+
|
| 106 |
+
def forward(self, hidden_states):
|
| 107 |
+
input_dtype = hidden_states.dtype
|
| 108 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 109 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 110 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 111 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
| 115 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 116 |
+
super().__init__()
|
| 117 |
+
|
| 118 |
+
self.dim = dim
|
| 119 |
+
self.max_position_embeddings = max_position_embeddings
|
| 120 |
+
self.base = base
|
| 121 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 122 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 123 |
+
|
| 124 |
+
# Build here to make `torch.jit.trace` work.
|
| 125 |
+
self._set_cos_sin_cache(
|
| 126 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 130 |
+
self.max_seq_len_cached = seq_len
|
| 131 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 132 |
+
|
| 133 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 134 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 135 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 136 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 137 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 138 |
+
|
| 139 |
+
def forward(self, x, seq_len=None):
|
| 140 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 141 |
+
if seq_len > self.max_seq_len_cached:
|
| 142 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 143 |
+
|
| 144 |
+
return (
|
| 145 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 146 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 151 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 152 |
+
|
| 153 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 154 |
+
self.scaling_factor = scaling_factor
|
| 155 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 156 |
+
|
| 157 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 158 |
+
self.max_seq_len_cached = seq_len
|
| 159 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 160 |
+
t = t / self.scaling_factor
|
| 161 |
+
|
| 162 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 163 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 164 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 165 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 166 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 170 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 171 |
+
|
| 172 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 173 |
+
self.scaling_factor = scaling_factor
|
| 174 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 175 |
+
|
| 176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 177 |
+
self.max_seq_len_cached = seq_len
|
| 178 |
+
|
| 179 |
+
if seq_len > self.max_position_embeddings:
|
| 180 |
+
base = self.base * (
|
| 181 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 182 |
+
) ** (self.dim / (self.dim - 2))
|
| 183 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 184 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 185 |
+
|
| 186 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 187 |
+
|
| 188 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 189 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 190 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 191 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 192 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def rotate_half(x):
|
| 196 |
+
"""Rotates half the hidden dims of the input."""
|
| 197 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 198 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 199 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 203 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 204 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 205 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 206 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 207 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 208 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 209 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 210 |
+
return q_embed, k_embed
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class LlamaMLP(nn.Module):
|
| 214 |
+
def __init__(self, config):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.pretraining_tp = config.pretraining_tp
|
| 217 |
+
self.hidden_size = config.hidden_size
|
| 218 |
+
self.intermediate_size = config.intermediate_size
|
| 219 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 220 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 221 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 222 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 223 |
+
|
| 224 |
+
def forward(self, x):
|
| 225 |
+
if self.pretraining_tp > 1:
|
| 226 |
+
slice = self.intermediate_size // self.pretraining_tp
|
| 227 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 228 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 229 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 230 |
+
|
| 231 |
+
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
| 232 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
| 233 |
+
|
| 234 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 235 |
+
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
| 236 |
+
down_proj = sum(down_proj)
|
| 237 |
+
else:
|
| 238 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 239 |
+
|
| 240 |
+
return down_proj
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 244 |
+
"""
|
| 245 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 246 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 247 |
+
"""
|
| 248 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 249 |
+
if n_rep == 1:
|
| 250 |
+
return hidden_states
|
| 251 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 252 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class LlamaAttention(nn.Module):
|
| 256 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 257 |
+
|
| 258 |
+
def __init__(self, config: LlamaMoEConfig):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.config = config
|
| 261 |
+
self.hidden_size = config.hidden_size
|
| 262 |
+
self.num_heads = config.num_attention_heads
|
| 263 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 264 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 265 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 266 |
+
self.pretraining_tp = config.pretraining_tp
|
| 267 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 268 |
+
|
| 269 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 270 |
+
raise ValueError(
|
| 271 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 272 |
+
f" and `num_heads`: {self.num_heads})."
|
| 273 |
+
)
|
| 274 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 275 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 276 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 277 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 278 |
+
self._init_rope()
|
| 279 |
+
|
| 280 |
+
def _init_rope(self):
|
| 281 |
+
if self.config.rope_scaling is None:
|
| 282 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
| 283 |
+
else:
|
| 284 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 285 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 286 |
+
if scaling_type == "linear":
|
| 287 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 288 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 289 |
+
)
|
| 290 |
+
elif scaling_type == "dynamic":
|
| 291 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 292 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 293 |
+
)
|
| 294 |
+
else:
|
| 295 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 296 |
+
|
| 297 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 298 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 299 |
+
|
| 300 |
+
def forward(
|
| 301 |
+
self,
|
| 302 |
+
hidden_states: torch.Tensor,
|
| 303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 304 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 305 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 306 |
+
output_attentions: bool = False,
|
| 307 |
+
use_cache: bool = False,
|
| 308 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 309 |
+
bsz, q_len, _ = hidden_states.size()
|
| 310 |
+
|
| 311 |
+
if self.pretraining_tp > 1:
|
| 312 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
| 313 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
| 314 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 315 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 316 |
+
|
| 317 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
| 318 |
+
query_states = torch.cat(query_states, dim=-1)
|
| 319 |
+
|
| 320 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
| 321 |
+
key_states = torch.cat(key_states, dim=-1)
|
| 322 |
+
|
| 323 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
| 324 |
+
value_states = torch.cat(value_states, dim=-1)
|
| 325 |
+
|
| 326 |
+
else:
|
| 327 |
+
query_states = self.q_proj(hidden_states)
|
| 328 |
+
key_states = self.k_proj(hidden_states)
|
| 329 |
+
value_states = self.v_proj(hidden_states)
|
| 330 |
+
|
| 331 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 332 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 333 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 334 |
+
|
| 335 |
+
kv_seq_len = key_states.shape[-2]
|
| 336 |
+
if past_key_value is not None:
|
| 337 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 338 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 339 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 340 |
+
|
| 341 |
+
if past_key_value is not None:
|
| 342 |
+
# reuse k, v, self_attention
|
| 343 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 344 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 345 |
+
|
| 346 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 347 |
+
|
| 348 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 349 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 350 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 351 |
+
|
| 352 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 353 |
+
|
| 354 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 355 |
+
raise ValueError(
|
| 356 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 357 |
+
f" {attn_weights.size()}"
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
if attention_mask is not None:
|
| 361 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 362 |
+
raise ValueError(
|
| 363 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 364 |
+
)
|
| 365 |
+
attn_weights = attn_weights + attention_mask
|
| 366 |
+
|
| 367 |
+
# upcast attention to fp32
|
| 368 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 369 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 370 |
+
|
| 371 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 372 |
+
raise ValueError(
|
| 373 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 374 |
+
f" {attn_output.size()}"
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 378 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 379 |
+
|
| 380 |
+
if self.pretraining_tp > 1:
|
| 381 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
| 382 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
| 383 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
| 384 |
+
else:
|
| 385 |
+
attn_output = self.o_proj(attn_output)
|
| 386 |
+
|
| 387 |
+
if not output_attentions:
|
| 388 |
+
attn_weights = None
|
| 389 |
+
|
| 390 |
+
return attn_output, attn_weights, past_key_value
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class TopKBalancedNoisyGate(nn.Module):
|
| 394 |
+
def __init__(
|
| 395 |
+
self,
|
| 396 |
+
input_size,
|
| 397 |
+
num_experts,
|
| 398 |
+
num_selects,
|
| 399 |
+
gate_network="mlp",
|
| 400 |
+
use_softmax=True,
|
| 401 |
+
use_balance=True,
|
| 402 |
+
balance_loss_weight=1e-2,
|
| 403 |
+
add_noise=True,
|
| 404 |
+
noise_epsilon=1e-2,
|
| 405 |
+
):
|
| 406 |
+
super(TopKBalancedNoisyGate, self).__init__()
|
| 407 |
+
assert num_selects <= num_experts
|
| 408 |
+
self.input_size = input_size
|
| 409 |
+
self.num_experts = num_experts
|
| 410 |
+
self.num_selects = num_selects
|
| 411 |
+
|
| 412 |
+
self.gate_network_type = gate_network
|
| 413 |
+
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
|
| 414 |
+
|
| 415 |
+
self.use_softmax = use_softmax
|
| 416 |
+
self.softmax = nn.Softmax(1)
|
| 417 |
+
|
| 418 |
+
self.use_balance = use_balance
|
| 419 |
+
self.balance_loss_weight = balance_loss_weight
|
| 420 |
+
|
| 421 |
+
# add_noise
|
| 422 |
+
self.add_noise = add_noise
|
| 423 |
+
self.noise_epsilon = noise_epsilon
|
| 424 |
+
self.warned = False
|
| 425 |
+
if self.add_noise:
|
| 426 |
+
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
|
| 427 |
+
self.weight_noise.weight.data = torch.zeros(
|
| 428 |
+
(num_experts, input_size),
|
| 429 |
+
requires_grad=True,
|
| 430 |
+
device=self.weight_noise.weight.data.device,
|
| 431 |
+
dtype=self.weight_noise.weight.data.dtype,
|
| 432 |
+
)
|
| 433 |
+
self.mean = 0.0
|
| 434 |
+
self.std = 1.0
|
| 435 |
+
self.normal = Normal(self.mean, self.std)
|
| 436 |
+
self.softplus = nn.Softplus()
|
| 437 |
+
|
| 438 |
+
self.reset_parameters()
|
| 439 |
+
|
| 440 |
+
def get_gate_network(self, gate_type, input_size, num_experts):
|
| 441 |
+
gate_type = gate_type.lower()
|
| 442 |
+
|
| 443 |
+
if gate_type == "linear":
|
| 444 |
+
gate_network = nn.Linear(input_size, num_experts, bias=False)
|
| 445 |
+
nn.init.zeros_(gate_network.weight)
|
| 446 |
+
elif gate_type == "mlp":
|
| 447 |
+
gate_network = torch.nn.Sequential(
|
| 448 |
+
torch.nn.Linear(input_size, num_experts, bias=False),
|
| 449 |
+
torch.nn.Tanh(),
|
| 450 |
+
torch.nn.Linear(num_experts, num_experts, bias=False),
|
| 451 |
+
)
|
| 452 |
+
else:
|
| 453 |
+
raise ValueError(f'Unexpected gate_type: {gate_type}.')
|
| 454 |
+
|
| 455 |
+
return gate_network
|
| 456 |
+
|
| 457 |
+
def reset_gate_network(self):
|
| 458 |
+
if "gate_network_type" not in vars(self):
|
| 459 |
+
raise KeyError(f"{type(self)} does not have a gate network.")
|
| 460 |
+
else:
|
| 461 |
+
self.gate_network = self.get_gate_network(
|
| 462 |
+
self.gate_network_type, self.input_size, self.num_experts
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
def reset_parameters(self):
|
| 466 |
+
if self.add_noise:
|
| 467 |
+
nn.init.zeros_(self.weight_noise.weight)
|
| 468 |
+
# nn.init.zeros_(self.weight_noise)
|
| 469 |
+
|
| 470 |
+
def cv_squared(self, x, eps=1e-10):
|
| 471 |
+
"""The squared coefficient of variation of a sample.
|
| 472 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
| 473 |
+
Epsilons added for numerical stability.
|
| 474 |
+
Returns 0 for an empty Tensor.
|
| 475 |
+
Args:
|
| 476 |
+
x: a `Tensor`.
|
| 477 |
+
Returns:
|
| 478 |
+
a `Scalar`.s
|
| 479 |
+
"""
|
| 480 |
+
if x.shape[0] == 1:
|
| 481 |
+
return torch.tensor(0.0, device=x.device)
|
| 482 |
+
return x.float().var() / (x.float().mean() ** 2 + eps)
|
| 483 |
+
|
| 484 |
+
def forward(self, x):
|
| 485 |
+
logits_gate = self.gate_network(x)
|
| 486 |
+
if self.training and self.add_noise:
|
| 487 |
+
noise_mm = self.weight_noise(x)
|
| 488 |
+
noise_control = self.softplus(noise_mm) + self.noise_epsilon
|
| 489 |
+
logits_noise = torch.randn_like(logits_gate) * noise_control
|
| 490 |
+
logits = logits_gate + logits_noise
|
| 491 |
+
else:
|
| 492 |
+
logits = logits_gate
|
| 493 |
+
|
| 494 |
+
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
|
| 495 |
+
top_k_logits = top_logits[:, :self.num_selects]
|
| 496 |
+
top_k_indices = top_indices[:, :self.num_selects]
|
| 497 |
+
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
|
| 498 |
+
top_k_scores = top_k_scores.to(logits.dtype)
|
| 499 |
+
|
| 500 |
+
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
|
| 501 |
+
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
|
| 502 |
+
importance = scores_filtered.sum(0) # shape(num_experts)
|
| 503 |
+
|
| 504 |
+
if self.training:
|
| 505 |
+
if self.add_noise and self.num_selects != self.num_experts:
|
| 506 |
+
batch_size = top_logits.size(0)
|
| 507 |
+
m = top_logits.size(1)
|
| 508 |
+
top_values_flat = top_logits.flatten()
|
| 509 |
+
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
|
| 510 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
|
| 511 |
+
is_in = torch.gt(logits_noise, threshold_if_in)
|
| 512 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
| 513 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
|
| 514 |
+
# is each value currently in the top k.
|
| 515 |
+
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
|
| 516 |
+
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
|
| 517 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
| 518 |
+
load = prob.sum(0)
|
| 519 |
+
else:
|
| 520 |
+
load = (scores_filtered > 0).sum(0)
|
| 521 |
+
if not self.add_noise and not self.warned:
|
| 522 |
+
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
|
| 523 |
+
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
|
| 524 |
+
self.warned = True
|
| 525 |
+
else:
|
| 526 |
+
load = (scores_filtered > 0).sum(0)
|
| 527 |
+
|
| 528 |
+
if self.use_balance:
|
| 529 |
+
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
|
| 530 |
+
balance_loss *= self.balance_loss_weight
|
| 531 |
+
else:
|
| 532 |
+
balance_loss = torch.tensor(-100.0, device=x.device)
|
| 533 |
+
|
| 534 |
+
return {
|
| 535 |
+
"topK_indices": top_k_indices,
|
| 536 |
+
"topK_scores": top_k_scores,
|
| 537 |
+
"balance_loss": balance_loss,
|
| 538 |
+
"load": load,
|
| 539 |
+
"importance": importance,
|
| 540 |
+
}
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
class LinearGLUExperts(nn.Module):
|
| 544 |
+
"""
|
| 545 |
+
Modified from transformers.models.llama.modeling_llama.LlamaMLP
|
| 546 |
+
"""
|
| 547 |
+
|
| 548 |
+
__constants__ = [
|
| 549 |
+
"bias",
|
| 550 |
+
"in_features",
|
| 551 |
+
"hidden_features",
|
| 552 |
+
"out_features",
|
| 553 |
+
"hidden_act",
|
| 554 |
+
"num_experts",
|
| 555 |
+
"size_experts",
|
| 556 |
+
]
|
| 557 |
+
|
| 558 |
+
def __init__(
|
| 559 |
+
self,
|
| 560 |
+
in_features,
|
| 561 |
+
hidden_features,
|
| 562 |
+
out_features,
|
| 563 |
+
hidden_act,
|
| 564 |
+
num_experts,
|
| 565 |
+
size_experts=None,
|
| 566 |
+
bias=True,
|
| 567 |
+
device=None,
|
| 568 |
+
dtype=None,
|
| 569 |
+
):
|
| 570 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
| 571 |
+
super(LinearGLUExperts, self).__init__()
|
| 572 |
+
self.in_features = in_features
|
| 573 |
+
self.hidden_features = hidden_features
|
| 574 |
+
self.out_features = out_features
|
| 575 |
+
self.hidden_act = hidden_act
|
| 576 |
+
self.num_experts = num_experts
|
| 577 |
+
|
| 578 |
+
if size_experts is None:
|
| 579 |
+
# all experts share the same number of hidden neurons
|
| 580 |
+
assert hidden_features % num_experts == 0
|
| 581 |
+
size_per_expert = hidden_features // num_experts
|
| 582 |
+
size_experts = [size_per_expert for _ in range(num_experts)]
|
| 583 |
+
else:
|
| 584 |
+
# use specified expert sizes
|
| 585 |
+
assert (
|
| 586 |
+
len(size_experts) == num_experts
|
| 587 |
+
and sum(size_experts) == hidden_features
|
| 588 |
+
)
|
| 589 |
+
self.size_experts = size_experts
|
| 590 |
+
|
| 591 |
+
self.act_fn = ACT2FN[hidden_act]
|
| 592 |
+
|
| 593 |
+
self.weight_gate = nn.ParameterList()
|
| 594 |
+
self.weight_up = nn.ParameterList()
|
| 595 |
+
self.weight_down = nn.ParameterList()
|
| 596 |
+
|
| 597 |
+
for i in range(num_experts):
|
| 598 |
+
# this matrix will be transposed when performing linear forwarding
|
| 599 |
+
this_expert_weight_gate = nn.Parameter(
|
| 600 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
| 601 |
+
)
|
| 602 |
+
# this matrix will be transposed when performing linear forwarding
|
| 603 |
+
this_expert_weight_up = nn.Parameter(
|
| 604 |
+
torch.empty((size_experts[i], in_features), **factory_kwargs)
|
| 605 |
+
)
|
| 606 |
+
# this matrix will be transposed when performing linear forwarding
|
| 607 |
+
this_expert_weight_down = nn.Parameter(
|
| 608 |
+
torch.empty((out_features, size_experts[i]), **factory_kwargs)
|
| 609 |
+
)
|
| 610 |
+
self.weight_gate.append(this_expert_weight_gate)
|
| 611 |
+
self.weight_up.append(this_expert_weight_up)
|
| 612 |
+
self.weight_down.append(this_expert_weight_down)
|
| 613 |
+
|
| 614 |
+
if bias:
|
| 615 |
+
self.bias_gate = nn.ParameterList()
|
| 616 |
+
self.bias_up = nn.ParameterList()
|
| 617 |
+
self.bias_down = nn.ParameterList()
|
| 618 |
+
|
| 619 |
+
for i in range(num_experts):
|
| 620 |
+
this_expert_bias_gate = nn.Parameter(
|
| 621 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
| 622 |
+
)
|
| 623 |
+
this_expert_bias_up = nn.Parameter(
|
| 624 |
+
torch.empty((size_experts[i],), **factory_kwargs)
|
| 625 |
+
)
|
| 626 |
+
this_expert_bias_down = nn.Parameter(
|
| 627 |
+
torch.empty((out_features,), **factory_kwargs)
|
| 628 |
+
)
|
| 629 |
+
self.bias_gate.append(this_expert_bias_gate)
|
| 630 |
+
self.bias_up.append(this_expert_bias_up)
|
| 631 |
+
self.bias_down.append(this_expert_bias_down)
|
| 632 |
+
else:
|
| 633 |
+
self.register_parameter("bias_gate", None)
|
| 634 |
+
self.register_parameter("bias_up", None)
|
| 635 |
+
self.register_parameter("bias_down", None)
|
| 636 |
+
|
| 637 |
+
self.reset_parameters()
|
| 638 |
+
|
| 639 |
+
def reset_parameters(self):
|
| 640 |
+
for i in range(self.num_experts):
|
| 641 |
+
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
|
| 642 |
+
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
|
| 643 |
+
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
|
| 644 |
+
if self.bias_gate is not None:
|
| 645 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
|
| 646 |
+
bound = 1 / math.sqrt(fan_in)
|
| 647 |
+
nn.init.uniform_(self.bias_gate[i], -bound, bound)
|
| 648 |
+
if self.bias_up is not None:
|
| 649 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
|
| 650 |
+
bound = 1 / math.sqrt(fan_in)
|
| 651 |
+
nn.init.uniform_(self.bias_up[i], -bound, bound)
|
| 652 |
+
if self.bias_down is not None:
|
| 653 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
|
| 654 |
+
bound = 1 / math.sqrt(fan_in)
|
| 655 |
+
nn.init.uniform_(self.bias_down[i], -bound, bound)
|
| 656 |
+
|
| 657 |
+
def forward(self, input, i):
|
| 658 |
+
gate = self.act_fn(
|
| 659 |
+
F.linear(
|
| 660 |
+
input,
|
| 661 |
+
self.weight_gate[i],
|
| 662 |
+
self.bias_gate[i] if self.bias_gate is not None else None,
|
| 663 |
+
)
|
| 664 |
+
)
|
| 665 |
+
up = F.linear(
|
| 666 |
+
input,
|
| 667 |
+
self.weight_up[i],
|
| 668 |
+
self.bias_up[i] if self.bias_up is not None else None,
|
| 669 |
+
)
|
| 670 |
+
down = F.linear(
|
| 671 |
+
gate * up,
|
| 672 |
+
self.weight_down[i],
|
| 673 |
+
self.bias_down[i] if self.bias_down is not None else None,
|
| 674 |
+
)
|
| 675 |
+
return down
|
| 676 |
+
|
| 677 |
+
def extra_repr(self):
|
| 678 |
+
return (
|
| 679 |
+
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
|
| 680 |
+
" num_experts={}, size_experts={}, bias={}".format(
|
| 681 |
+
self.in_features,
|
| 682 |
+
self.hidden_features,
|
| 683 |
+
self.out_features,
|
| 684 |
+
self.hidden_act,
|
| 685 |
+
self.num_experts,
|
| 686 |
+
self.size_experts,
|
| 687 |
+
self.bias_gate is not None,
|
| 688 |
+
)
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
class UniversalCalculator(nn.Module):
|
| 693 |
+
def __init__(
|
| 694 |
+
self,
|
| 695 |
+
experts: LinearGLUExperts,
|
| 696 |
+
multiply_gate_scores=True,
|
| 697 |
+
score_scale_factor=1.0,
|
| 698 |
+
add_weight_norm: bool = False,
|
| 699 |
+
):
|
| 700 |
+
super(UniversalCalculator, self).__init__()
|
| 701 |
+
self.experts = experts
|
| 702 |
+
# TODO (zhutong): use vmap to boost the training efficiency
|
| 703 |
+
# self.experts_vmap = torch.vmap(self.experts)
|
| 704 |
+
self.multiply_gate_scores = multiply_gate_scores
|
| 705 |
+
self.score_scale_factor = score_scale_factor
|
| 706 |
+
self.num_experts = experts.num_experts
|
| 707 |
+
self.mlp_norm = None
|
| 708 |
+
if multiply_gate_scores and add_weight_norm:
|
| 709 |
+
raise NotImplementedError
|
| 710 |
+
|
| 711 |
+
def reset_experts(self):
|
| 712 |
+
self.experts.reset_parameters()
|
| 713 |
+
|
| 714 |
+
def forward(
|
| 715 |
+
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
|
| 716 |
+
) -> CalculatorOutput:
|
| 717 |
+
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
|
| 718 |
+
num_selects = topK_indices.size(1)
|
| 719 |
+
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
|
| 720 |
+
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
|
| 721 |
+
batch_indices = torch.arange(
|
| 722 |
+
batch_size, device=topK_scores.device
|
| 723 |
+
).repeat_interleave(num_selects)
|
| 724 |
+
|
| 725 |
+
_, index_sorted_topK_indices = topK_indices.sort(0)
|
| 726 |
+
|
| 727 |
+
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
|
| 728 |
+
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
|
| 729 |
+
|
| 730 |
+
if expert_batch_size is None:
|
| 731 |
+
expert_batch_size = topK_indices.bincount(
|
| 732 |
+
minlength=self.num_experts
|
| 733 |
+
).tolist()
|
| 734 |
+
|
| 735 |
+
sorted_x = x.index_select(0, sorted_batch_indices)
|
| 736 |
+
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
|
| 737 |
+
|
| 738 |
+
expert_outputs = [
|
| 739 |
+
self.experts(split_x[i], i)
|
| 740 |
+
for i in range(self.num_experts)
|
| 741 |
+
if split_x[i].shape[0] > 0
|
| 742 |
+
]
|
| 743 |
+
|
| 744 |
+
# (bsz*seq_len*num_selects, hidden_size)
|
| 745 |
+
cat_expert_outputs = torch.cat(expert_outputs, 0)
|
| 746 |
+
output_dim = cat_expert_outputs.size(1)
|
| 747 |
+
if self.multiply_gate_scores:
|
| 748 |
+
if self.mlp_norm is None:
|
| 749 |
+
cat_expert_outputs = torch.mul(
|
| 750 |
+
cat_expert_outputs,
|
| 751 |
+
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
|
| 752 |
+
)
|
| 753 |
+
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
|
| 754 |
+
else:
|
| 755 |
+
cat_expert_outputs = torch.mul(
|
| 756 |
+
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
|
| 757 |
+
)
|
| 758 |
+
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
|
| 759 |
+
|
| 760 |
+
zeros = torch.zeros(
|
| 761 |
+
(batch_size, output_dim),
|
| 762 |
+
device=cat_expert_outputs.device,
|
| 763 |
+
dtype=cat_expert_outputs.dtype,
|
| 764 |
+
)
|
| 765 |
+
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
|
| 766 |
+
|
| 767 |
+
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
class BaseMoELayer(nn.Module):
|
| 771 |
+
def __init__(self):
|
| 772 |
+
super(BaseMoELayer, self).__init__()
|
| 773 |
+
|
| 774 |
+
self.gate: TopKBalancedNoisyGate
|
| 775 |
+
self.calculator: UniversalCalculator
|
| 776 |
+
|
| 777 |
+
def _create_gate(self, **kwargs):
|
| 778 |
+
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
|
| 779 |
+
|
| 780 |
+
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
|
| 781 |
+
self.gate = TopKBalancedNoisyGate(
|
| 782 |
+
self.input_size,
|
| 783 |
+
self.num_experts,
|
| 784 |
+
self.num_selects,
|
| 785 |
+
gate_network=kwargs.get("gate_network", "mlp"),
|
| 786 |
+
use_softmax=kwargs.get("gate_use_softmax", True),
|
| 787 |
+
use_balance=kwargs.get("gate_use_balance", True),
|
| 788 |
+
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
|
| 789 |
+
add_noise=kwargs.get("gate_add_noise", True),
|
| 790 |
+
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
|
| 791 |
+
)
|
| 792 |
+
else:
|
| 793 |
+
raise NotImplementedError
|
| 794 |
+
|
| 795 |
+
def _create_calculator(self, experts, **kwargs):
|
| 796 |
+
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
|
| 797 |
+
|
| 798 |
+
if self.calculator_type == "UniversalCalculator": # top K calculator
|
| 799 |
+
self.calculator = UniversalCalculator(
|
| 800 |
+
experts,
|
| 801 |
+
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
|
| 802 |
+
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
|
| 803 |
+
add_weight_norm=kwargs.get("add_weight_norm", False),
|
| 804 |
+
)
|
| 805 |
+
else:
|
| 806 |
+
raise NotImplementedError
|
| 807 |
+
|
| 808 |
+
def forward(self, x) -> MoEMlpOutput:
|
| 809 |
+
original_shape = x.shape[:-1]
|
| 810 |
+
x = x.reshape(-1, self.input_size)
|
| 811 |
+
gate_outputs: dict = self.gate(x)
|
| 812 |
+
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
|
| 813 |
+
y = calc_outs.hidden_states
|
| 814 |
+
y = y.reshape(original_shape + (self.output_size,))
|
| 815 |
+
|
| 816 |
+
return MoEMlpOutput(
|
| 817 |
+
hidden_states=y,
|
| 818 |
+
balance_loss=gate_outputs.get("balance_loss"),
|
| 819 |
+
num_dropped_tokens=calc_outs.num_dropped_tokens,
|
| 820 |
+
gate_load=gate_outputs.get("load", torch.tensor(-1)),
|
| 821 |
+
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
def set_num_selects(self, num_selects):
|
| 825 |
+
if "num_selects" not in vars(self.gate):
|
| 826 |
+
raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
|
| 827 |
+
elif num_selects > self.gate.num_experts:
|
| 828 |
+
raise ValueError(
|
| 829 |
+
'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
|
| 830 |
+
)
|
| 831 |
+
elif self.gate_type in ("SwitchBalancedGate",):
|
| 832 |
+
raise ValueError(
|
| 833 |
+
f"{self.gate_type} doesn't support manually setting num_selects."
|
| 834 |
+
)
|
| 835 |
+
else:
|
| 836 |
+
self.num_selects = num_selects
|
| 837 |
+
self.gate.num_selects = num_selects
|
| 838 |
+
|
| 839 |
+
def set_gate_use_softmax(self, use_softmax):
|
| 840 |
+
if "use_softmax" not in vars(self.gate):
|
| 841 |
+
raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
|
| 842 |
+
else:
|
| 843 |
+
self.gate.use_softmax = use_softmax
|
| 844 |
+
|
| 845 |
+
def set_gate_use_balance(self, use_balance):
|
| 846 |
+
if "use_balance" not in vars(self.gate):
|
| 847 |
+
raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
|
| 848 |
+
else:
|
| 849 |
+
self.gate.use_balance = use_balance
|
| 850 |
+
|
| 851 |
+
def set_gate_balance_loss_weight(self, balance_loss_weight):
|
| 852 |
+
if "balance_loss_weight" not in vars(self.gate):
|
| 853 |
+
raise KeyError(
|
| 854 |
+
f'{self.gate_type} does not have a key named "balance_loss_weight".'
|
| 855 |
+
)
|
| 856 |
+
else:
|
| 857 |
+
self.gate.balance_loss_weight = balance_loss_weight
|
| 858 |
+
|
| 859 |
+
def set_gate_add_noise(self, add_noise):
|
| 860 |
+
if "add_noise" not in vars(self.gate):
|
| 861 |
+
raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
|
| 862 |
+
else:
|
| 863 |
+
self.gate.add_noise = add_noise
|
| 864 |
+
|
| 865 |
+
def set_gate_noise_epsilon(self, noise_epsilon):
|
| 866 |
+
if "noise_epsilon" not in vars(self.gate):
|
| 867 |
+
raise KeyError(
|
| 868 |
+
f'{self.gate_type} does not have a key named "noise_epsilon".'
|
| 869 |
+
)
|
| 870 |
+
else:
|
| 871 |
+
self.gate.noise_epsilon = noise_epsilon
|
| 872 |
+
|
| 873 |
+
def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
| 874 |
+
if "multiply_gate_scores" not in vars(self.calculator):
|
| 875 |
+
raise KeyError(
|
| 876 |
+
f'{self.gate_type} does not have a key named "multiply_gate_scores".'
|
| 877 |
+
)
|
| 878 |
+
else:
|
| 879 |
+
self.calculator.multiply_gate_scores = multiply_gate_scores
|
| 880 |
+
|
| 881 |
+
def set_calculator_score_scale_factor(self, score_scale_factor):
|
| 882 |
+
if "score_scale_factor" not in vars(self.calculator):
|
| 883 |
+
raise KeyError(
|
| 884 |
+
f'{self.gate_type} does not have a key named "score_scale_factor".'
|
| 885 |
+
)
|
| 886 |
+
else:
|
| 887 |
+
self.calculator.score_scale_factor = score_scale_factor
|
| 888 |
+
|
| 889 |
+
def set_calculator_drop_tokens(self, drop_tokens):
|
| 890 |
+
if "drop_tokens" not in vars(self.calculator):
|
| 891 |
+
raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
|
| 892 |
+
elif (
|
| 893 |
+
drop_tokens
|
| 894 |
+
and self.calculator.dropped_padding != "zero"
|
| 895 |
+
and self.input_size != self.output_size
|
| 896 |
+
):
|
| 897 |
+
warnings.warn(
|
| 898 |
+
'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
|
| 899 |
+
)
|
| 900 |
+
else:
|
| 901 |
+
self.calculator.drop_tokens = drop_tokens
|
| 902 |
+
|
| 903 |
+
def set_calculator_dropped_padding(self, dropped_padding):
|
| 904 |
+
if "dropped_padding" not in vars(self.calculator):
|
| 905 |
+
raise KeyError(
|
| 906 |
+
f'{self.gate_type} does not have a key named "dropped_padding".'
|
| 907 |
+
)
|
| 908 |
+
elif dropped_padding not in self.calculator.available_dropped_padding_choices:
|
| 909 |
+
raise ValueError(
|
| 910 |
+
f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
|
| 911 |
+
)
|
| 912 |
+
elif (
|
| 913 |
+
self.calculator.drop_tokens
|
| 914 |
+
and dropped_padding != "zero"
|
| 915 |
+
and self.input_size != self.output_size
|
| 916 |
+
):
|
| 917 |
+
warnings.warn(
|
| 918 |
+
f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
|
| 919 |
+
)
|
| 920 |
+
else:
|
| 921 |
+
self.calculator.dropped_padding = dropped_padding
|
| 922 |
+
|
| 923 |
+
def set_calculator_capacity_factor(self, capacity_factor):
|
| 924 |
+
if "capacity_factor" not in vars(self.calculator):
|
| 925 |
+
raise KeyError(
|
| 926 |
+
f'{self.gate_type} does not have a key named "capacity_factor".'
|
| 927 |
+
)
|
| 928 |
+
else:
|
| 929 |
+
self.calculator.capacity_factor = capacity_factor
|
| 930 |
+
|
| 931 |
+
def reset_gate_network(self):
|
| 932 |
+
self.gate.reset_gate_network()
|
| 933 |
+
|
| 934 |
+
def reset_experts(self):
|
| 935 |
+
self.calculator.reset_experts()
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
class LinearGLUMoELayer(BaseMoELayer):
|
| 939 |
+
def __init__(
|
| 940 |
+
self,
|
| 941 |
+
input_size,
|
| 942 |
+
hidden_size,
|
| 943 |
+
output_size,
|
| 944 |
+
hidden_act,
|
| 945 |
+
num_experts,
|
| 946 |
+
num_selects,
|
| 947 |
+
size_experts=None,
|
| 948 |
+
bias=True,
|
| 949 |
+
**kwargs,
|
| 950 |
+
):
|
| 951 |
+
super(LinearGLUMoELayer, self).__init__()
|
| 952 |
+
assert num_selects <= num_experts
|
| 953 |
+
self.input_size = input_size
|
| 954 |
+
self.hidden_size = hidden_size
|
| 955 |
+
self.output_size = output_size
|
| 956 |
+
self.hidden_act = hidden_act
|
| 957 |
+
self.num_experts = num_experts
|
| 958 |
+
self.num_selects = num_selects
|
| 959 |
+
self.size_experts = size_experts
|
| 960 |
+
self.bias = bias
|
| 961 |
+
|
| 962 |
+
experts = LinearGLUExperts(
|
| 963 |
+
input_size,
|
| 964 |
+
hidden_size,
|
| 965 |
+
output_size,
|
| 966 |
+
hidden_act,
|
| 967 |
+
num_experts,
|
| 968 |
+
size_experts=size_experts,
|
| 969 |
+
bias=bias,
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
+
self._create_gate(**kwargs)
|
| 973 |
+
self._create_calculator(experts, **kwargs)
|
| 974 |
+
|
| 975 |
+
|
| 976 |
+
class LlamaMoEDecoderLayer(nn.Module):
|
| 977 |
+
def __init__(self, config: LlamaMoEConfig, layer_index):
|
| 978 |
+
super().__init__()
|
| 979 |
+
|
| 980 |
+
self.hidden_size = config.hidden_size
|
| 981 |
+
self.self_attn = LlamaAttention(config=config)
|
| 982 |
+
self.mlp = LlamaMLP(config)
|
| 983 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 984 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 985 |
+
|
| 986 |
+
gating_config = {
|
| 987 |
+
# all gates
|
| 988 |
+
"gate_type": config.gate_type,
|
| 989 |
+
"gate_network": config.gate_network,
|
| 990 |
+
"gate_use_softmax": config.gate_use_softmax,
|
| 991 |
+
"gate_use_balance": config.gate_use_balance,
|
| 992 |
+
"gate_balance_loss_weight": config.gate_balance_loss_weight,
|
| 993 |
+
"gate_add_noise": config.gate_add_noise,
|
| 994 |
+
# TopKBalancedNoisyGate
|
| 995 |
+
"gate_noise_epsilon": config.gate_noise_epsilon,
|
| 996 |
+
}
|
| 997 |
+
calculator_config = {
|
| 998 |
+
# all calculators
|
| 999 |
+
"calculator_type": config.calculator_type,
|
| 1000 |
+
"multiply_gate_scores": config.multiply_gate_scores,
|
| 1001 |
+
"score_scale_factor": (
|
| 1002 |
+
config.score_scale_factor[layer_index]
|
| 1003 |
+
if isinstance(config.score_scale_factor, list)
|
| 1004 |
+
else config.score_scale_factor
|
| 1005 |
+
),
|
| 1006 |
+
"add_weight_norm": config.add_weight_norm,
|
| 1007 |
+
# SwitchDropTokenCalculator
|
| 1008 |
+
"drop_tokens": config.drop_tokens,
|
| 1009 |
+
"dropped_padding": config.dropped_padding,
|
| 1010 |
+
"capacity_factor": config.capacity_factor,
|
| 1011 |
+
}
|
| 1012 |
+
|
| 1013 |
+
self.mlp = LinearGLUMoELayer(
|
| 1014 |
+
input_size=self.hidden_size,
|
| 1015 |
+
hidden_size=config.intermediate_size,
|
| 1016 |
+
output_size=self.hidden_size,
|
| 1017 |
+
hidden_act=config.hidden_act,
|
| 1018 |
+
num_experts=config.num_experts,
|
| 1019 |
+
num_selects=config.num_selects,
|
| 1020 |
+
size_experts=(
|
| 1021 |
+
config.size_experts[layer_index]
|
| 1022 |
+
if config.size_experts is not None
|
| 1023 |
+
else None
|
| 1024 |
+
),
|
| 1025 |
+
bias=False,
|
| 1026 |
+
**gating_config,
|
| 1027 |
+
**calculator_config,
|
| 1028 |
+
)
|
| 1029 |
+
|
| 1030 |
+
def forward(
|
| 1031 |
+
self,
|
| 1032 |
+
hidden_states,
|
| 1033 |
+
attention_mask=None,
|
| 1034 |
+
position_ids=None,
|
| 1035 |
+
past_key_value=None,
|
| 1036 |
+
output_attentions=False,
|
| 1037 |
+
use_cache=False,
|
| 1038 |
+
) -> tuple:
|
| 1039 |
+
residual = hidden_states
|
| 1040 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1041 |
+
|
| 1042 |
+
# Self Attention
|
| 1043 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 1044 |
+
hidden_states=hidden_states,
|
| 1045 |
+
attention_mask=attention_mask,
|
| 1046 |
+
position_ids=position_ids,
|
| 1047 |
+
past_key_value=past_key_value,
|
| 1048 |
+
output_attentions=output_attentions,
|
| 1049 |
+
use_cache=use_cache,
|
| 1050 |
+
)
|
| 1051 |
+
hidden_states = residual + hidden_states
|
| 1052 |
+
|
| 1053 |
+
# Fully Connected
|
| 1054 |
+
residual = hidden_states
|
| 1055 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1056 |
+
mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
|
| 1057 |
+
hidden_states = residual + mlp_outs.hidden_states
|
| 1058 |
+
|
| 1059 |
+
outputs = (
|
| 1060 |
+
hidden_states,
|
| 1061 |
+
mlp_outs.balance_loss,
|
| 1062 |
+
mlp_outs.num_dropped_tokens,
|
| 1063 |
+
mlp_outs.gate_load,
|
| 1064 |
+
mlp_outs.gate_importance,
|
| 1065 |
+
)
|
| 1066 |
+
if output_attentions:
|
| 1067 |
+
outputs += (self_attn_weights,)
|
| 1068 |
+
if use_cache:
|
| 1069 |
+
outputs += (present_key_value,)
|
| 1070 |
+
|
| 1071 |
+
return outputs
|
| 1072 |
+
|
| 1073 |
+
def set_moe_num_selects(self, num_selects):
|
| 1074 |
+
self.mlp.set_num_selects(num_selects)
|
| 1075 |
+
|
| 1076 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
| 1077 |
+
self.mlp.set_gate_use_softmax(use_softmax)
|
| 1078 |
+
|
| 1079 |
+
def set_moe_gate_use_balance(self, use_balance):
|
| 1080 |
+
self.mlp.set_gate_use_balance(use_balance)
|
| 1081 |
+
|
| 1082 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
| 1083 |
+
self.mlp.set_gate_balance_loss_weight(balance_loss_weight)
|
| 1084 |
+
|
| 1085 |
+
def set_moe_gate_add_noise(self, add_noise):
|
| 1086 |
+
self.mlp.set_gate_add_noise(add_noise)
|
| 1087 |
+
|
| 1088 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
| 1089 |
+
self.mlp.set_gate_noise_epsilon(noise_epsilon)
|
| 1090 |
+
|
| 1091 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
| 1092 |
+
self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)
|
| 1093 |
+
|
| 1094 |
+
def set_moe_calculator_score_scale_factor(self, score_scale_factor):
|
| 1095 |
+
self.mlp.set_calculator_score_scale_factor(score_scale_factor)
|
| 1096 |
+
|
| 1097 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
| 1098 |
+
self.mlp.set_calculator_drop_tokens(drop_tokens)
|
| 1099 |
+
|
| 1100 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
| 1101 |
+
self.mlp.set_calculator_dropped_padding(dropped_padding)
|
| 1102 |
+
|
| 1103 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
| 1104 |
+
self.mlp.set_calculator_capacity_factor(capacity_factor)
|
| 1105 |
+
|
| 1106 |
+
def reset_gate_network(self):
|
| 1107 |
+
self.mlp.reset_gate_network()
|
| 1108 |
+
|
| 1109 |
+
def reset_experts(self):
|
| 1110 |
+
self.mlp.reset_experts()
|
| 1111 |
+
|
| 1112 |
+
|
| 1113 |
+
class LlamaMoEPreTrainedModel(PreTrainedModel):
|
| 1114 |
+
config_class = LlamaMoEConfig
|
| 1115 |
+
base_model_prefix = "model"
|
| 1116 |
+
supports_gradient_checkpointing = True
|
| 1117 |
+
_no_split_modules = ["LlamaMoEDecoderLayer"]
|
| 1118 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1119 |
+
|
| 1120 |
+
def _init_weights(self, module):
|
| 1121 |
+
std = self.config.initializer_range
|
| 1122 |
+
if isinstance(module, nn.Linear):
|
| 1123 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1124 |
+
if module.bias is not None:
|
| 1125 |
+
module.bias.data.zero_()
|
| 1126 |
+
elif isinstance(module, nn.Embedding):
|
| 1127 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1128 |
+
if module.padding_idx is not None:
|
| 1129 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1130 |
+
|
| 1131 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 1132 |
+
if isinstance(module, LlamaMoEModel):
|
| 1133 |
+
module.gradient_checkpointing = value
|
| 1134 |
+
|
| 1135 |
+
|
| 1136 |
+
class LlamaMoEModel(LlamaMoEPreTrainedModel):
|
| 1137 |
+
def __init__(self, config: LlamaMoEConfig):
|
| 1138 |
+
super().__init__(config)
|
| 1139 |
+
self.padding_idx = config.pad_token_id
|
| 1140 |
+
self.vocab_size = config.vocab_size
|
| 1141 |
+
|
| 1142 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1143 |
+
self.layers = nn.ModuleList(
|
| 1144 |
+
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
| 1145 |
+
)
|
| 1146 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1147 |
+
self.gradient_checkpointing = False
|
| 1148 |
+
self.post_init()
|
| 1149 |
+
|
| 1150 |
+
def get_input_embeddings(self):
|
| 1151 |
+
return self.embed_tokens
|
| 1152 |
+
|
| 1153 |
+
def set_input_embeddings(self, value):
|
| 1154 |
+
self.embed_tokens = value
|
| 1155 |
+
|
| 1156 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 1157 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 1158 |
+
# create causal mask
|
| 1159 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1160 |
+
combined_attention_mask = None
|
| 1161 |
+
if input_shape[-1] > 1:
|
| 1162 |
+
combined_attention_mask = _make_causal_mask(
|
| 1163 |
+
input_shape,
|
| 1164 |
+
inputs_embeds.dtype,
|
| 1165 |
+
device=inputs_embeds.device,
|
| 1166 |
+
past_key_values_length=past_key_values_length,
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
if attention_mask is not None:
|
| 1170 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1171 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 1172 |
+
inputs_embeds.device
|
| 1173 |
+
)
|
| 1174 |
+
combined_attention_mask = (
|
| 1175 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 1176 |
+
)
|
| 1177 |
+
|
| 1178 |
+
return combined_attention_mask
|
| 1179 |
+
|
| 1180 |
+
def forward(
|
| 1181 |
+
self,
|
| 1182 |
+
input_ids=None,
|
| 1183 |
+
attention_mask=None,
|
| 1184 |
+
position_ids=None,
|
| 1185 |
+
past_key_values=None,
|
| 1186 |
+
inputs_embeds=None,
|
| 1187 |
+
use_cache=None,
|
| 1188 |
+
output_attentions=None,
|
| 1189 |
+
output_hidden_states=None,
|
| 1190 |
+
return_dict=None,
|
| 1191 |
+
):
|
| 1192 |
+
output_attentions = (
|
| 1193 |
+
output_attentions
|
| 1194 |
+
if output_attentions is not None
|
| 1195 |
+
else self.config.output_attentions
|
| 1196 |
+
)
|
| 1197 |
+
output_hidden_states = (
|
| 1198 |
+
output_hidden_states
|
| 1199 |
+
if output_hidden_states is not None
|
| 1200 |
+
else self.config.output_hidden_states
|
| 1201 |
+
)
|
| 1202 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1203 |
+
|
| 1204 |
+
return_dict = (
|
| 1205 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
# retrieve input_ids and inputs_embeds
|
| 1209 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1210 |
+
raise ValueError(
|
| 1211 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
|
| 1212 |
+
" the same time"
|
| 1213 |
+
)
|
| 1214 |
+
elif input_ids is not None:
|
| 1215 |
+
batch_size, seq_length = input_ids.shape
|
| 1216 |
+
elif inputs_embeds is not None:
|
| 1217 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1218 |
+
else:
|
| 1219 |
+
raise ValueError(
|
| 1220 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 1221 |
+
)
|
| 1222 |
+
|
| 1223 |
+
seq_length_with_past = seq_length
|
| 1224 |
+
past_key_values_length = 0
|
| 1225 |
+
|
| 1226 |
+
if past_key_values is not None:
|
| 1227 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 1228 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1229 |
+
|
| 1230 |
+
if position_ids is None:
|
| 1231 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1232 |
+
position_ids = torch.arange(
|
| 1233 |
+
past_key_values_length,
|
| 1234 |
+
seq_length + past_key_values_length,
|
| 1235 |
+
dtype=torch.long,
|
| 1236 |
+
device=device,
|
| 1237 |
+
)
|
| 1238 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1239 |
+
else:
|
| 1240 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1241 |
+
|
| 1242 |
+
if inputs_embeds is None:
|
| 1243 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1244 |
+
# embed positions
|
| 1245 |
+
if attention_mask is None:
|
| 1246 |
+
attention_mask = torch.ones(
|
| 1247 |
+
(batch_size, seq_length_with_past),
|
| 1248 |
+
dtype=torch.bool,
|
| 1249 |
+
device=inputs_embeds.device,
|
| 1250 |
+
)
|
| 1251 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 1252 |
+
attention_mask,
|
| 1253 |
+
(batch_size, seq_length),
|
| 1254 |
+
inputs_embeds,
|
| 1255 |
+
past_key_values_length,
|
| 1256 |
+
)
|
| 1257 |
+
|
| 1258 |
+
hidden_states = inputs_embeds
|
| 1259 |
+
balance_loss = 0.0
|
| 1260 |
+
|
| 1261 |
+
if self.gradient_checkpointing and self.training:
|
| 1262 |
+
if use_cache:
|
| 1263 |
+
logger.warning_once(
|
| 1264 |
+
"`use_cache=True` is incompatible with gradient checkpointing."
|
| 1265 |
+
" Setting `use_cache=False`..."
|
| 1266 |
+
)
|
| 1267 |
+
use_cache = False
|
| 1268 |
+
|
| 1269 |
+
# decoder layers
|
| 1270 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1271 |
+
all_self_attns = () if output_attentions else None
|
| 1272 |
+
next_decoder_cache = () if use_cache else None
|
| 1273 |
+
|
| 1274 |
+
num_dropped_tokens = ()
|
| 1275 |
+
gate_load = ()
|
| 1276 |
+
gate_importance = ()
|
| 1277 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1278 |
+
if output_hidden_states:
|
| 1279 |
+
all_hidden_states += (hidden_states,)
|
| 1280 |
+
|
| 1281 |
+
past_key_value = (
|
| 1282 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 1283 |
+
)
|
| 1284 |
+
|
| 1285 |
+
if self.gradient_checkpointing and self.training:
|
| 1286 |
+
|
| 1287 |
+
def create_custom_forward(module):
|
| 1288 |
+
def custom_forward(*inputs):
|
| 1289 |
+
# None for past_key_value
|
| 1290 |
+
return module(*inputs, output_attentions, None)
|
| 1291 |
+
|
| 1292 |
+
return custom_forward
|
| 1293 |
+
|
| 1294 |
+
layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
|
| 1295 |
+
create_custom_forward(decoder_layer),
|
| 1296 |
+
hidden_states,
|
| 1297 |
+
attention_mask,
|
| 1298 |
+
position_ids,
|
| 1299 |
+
None,
|
| 1300 |
+
)
|
| 1301 |
+
else:
|
| 1302 |
+
layer_outputs: tuple = decoder_layer(
|
| 1303 |
+
hidden_states,
|
| 1304 |
+
attention_mask=attention_mask,
|
| 1305 |
+
position_ids=position_ids,
|
| 1306 |
+
past_key_value=past_key_value,
|
| 1307 |
+
output_attentions=output_attentions,
|
| 1308 |
+
use_cache=use_cache,
|
| 1309 |
+
)
|
| 1310 |
+
|
| 1311 |
+
hidden_states = layer_outputs[0]
|
| 1312 |
+
if layer_outputs[1] is not None:
|
| 1313 |
+
balance_loss += layer_outputs[1]
|
| 1314 |
+
|
| 1315 |
+
if use_cache:
|
| 1316 |
+
next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)
|
| 1317 |
+
|
| 1318 |
+
if output_attentions:
|
| 1319 |
+
all_self_attns += (layer_outputs[5],)
|
| 1320 |
+
|
| 1321 |
+
num_dropped_tokens += (layer_outputs[2],)
|
| 1322 |
+
gate_load += (layer_outputs[3],)
|
| 1323 |
+
gate_importance += (layer_outputs[4],)
|
| 1324 |
+
|
| 1325 |
+
hidden_states = self.norm(hidden_states)
|
| 1326 |
+
|
| 1327 |
+
# add hidden states from the last decoder layer
|
| 1328 |
+
if output_hidden_states:
|
| 1329 |
+
all_hidden_states += (hidden_states,)
|
| 1330 |
+
|
| 1331 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1332 |
+
if not return_dict:
|
| 1333 |
+
return tuple(
|
| 1334 |
+
v
|
| 1335 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1336 |
+
if v is not None
|
| 1337 |
+
)
|
| 1338 |
+
return BaseMoEModelOutputWithPast(
|
| 1339 |
+
last_hidden_state=hidden_states,
|
| 1340 |
+
balance_loss=balance_loss,
|
| 1341 |
+
past_key_values=next_cache,
|
| 1342 |
+
hidden_states=all_hidden_states,
|
| 1343 |
+
attentions=all_self_attns,
|
| 1344 |
+
num_dropped_tokens=num_dropped_tokens,
|
| 1345 |
+
gate_load=gate_load,
|
| 1346 |
+
gate_importance=gate_importance,
|
| 1347 |
+
)
|
| 1348 |
+
|
| 1349 |
+
def update_config(self):
|
| 1350 |
+
self.config.vocab_size = self.config.vocab_size
|
| 1351 |
+
self.config.max_position_embeddings = self.config.max_position_embeddings
|
| 1352 |
+
# ↓↓↓↓↓↓↓↓↓↓↓↓ changed here ↓↓↓↓↓↓↓↓↓↓↓↓ #
|
| 1353 |
+
self.config.hidden_size = self.layers[0].mlp.input_size
|
| 1354 |
+
self.config.intermediate_size = self.layers[0].mlp.hidden_size
|
| 1355 |
+
self.config.num_hidden_layers = len(self.layers)
|
| 1356 |
+
self.config.num_attention_heads = self.layers[0].self_attn.num_heads
|
| 1357 |
+
self.config.hidden_act = self.layers[0].mlp.hidden_act
|
| 1358 |
+
# ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ #
|
| 1359 |
+
self.config.initializer_range = self.config.initializer_range
|
| 1360 |
+
self.config.rms_norm_eps = self.config.rms_norm_eps
|
| 1361 |
+
self.config.pretraining_tp = self.config.pretraining_tp
|
| 1362 |
+
self.config.use_cache = self.config.use_cache
|
| 1363 |
+
self.config.rope_scaling = self.config.rope_scaling
|
| 1364 |
+
self.config._rope_scaling_validation()
|
| 1365 |
+
|
| 1366 |
+
self.config.num_experts = self.layers[0].mlp.num_experts
|
| 1367 |
+
self.config.num_selects = self.layers[0].mlp.num_selects
|
| 1368 |
+
self.config.size_experts = [
|
| 1369 |
+
self.layers[i].mlp.calculator.experts.size_experts
|
| 1370 |
+
for i in range(self.config.num_hidden_layers)
|
| 1371 |
+
]
|
| 1372 |
+
|
| 1373 |
+
self.config.gate_type = vars(self.layers[0].mlp).get(
|
| 1374 |
+
"gate_type", "TopKBalancedNoisyGate"
|
| 1375 |
+
)
|
| 1376 |
+
self.config.gate_network = vars(self.layers[0].mlp.gate).get(
|
| 1377 |
+
"gate_network_type", "mlp"
|
| 1378 |
+
)
|
| 1379 |
+
self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
|
| 1380 |
+
"use_softmax", True
|
| 1381 |
+
)
|
| 1382 |
+
self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
|
| 1383 |
+
"use_balance", True
|
| 1384 |
+
)
|
| 1385 |
+
self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
|
| 1386 |
+
"balance_loss_weight", 1e-2
|
| 1387 |
+
)
|
| 1388 |
+
self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
|
| 1389 |
+
"add_noise", True
|
| 1390 |
+
)
|
| 1391 |
+
self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
|
| 1392 |
+
"noise_epsilon", 1e-2
|
| 1393 |
+
)
|
| 1394 |
+
|
| 1395 |
+
self.config.calculator_type = vars(self.layers[0].mlp).get(
|
| 1396 |
+
"calculator_type", "UniversalCalculator"
|
| 1397 |
+
)
|
| 1398 |
+
self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
|
| 1399 |
+
"multiply_gate_scores", True
|
| 1400 |
+
)
|
| 1401 |
+
self.config.score_scale_factor = [
|
| 1402 |
+
vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
|
| 1403 |
+
for i in range(self.config.num_hidden_layers)
|
| 1404 |
+
]
|
| 1405 |
+
self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
|
| 1406 |
+
"drop_tokens", True
|
| 1407 |
+
)
|
| 1408 |
+
self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
|
| 1409 |
+
"dropped_padding", "zero"
|
| 1410 |
+
)
|
| 1411 |
+
self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
|
| 1412 |
+
"capacity_factor", 1.25
|
| 1413 |
+
)
|
| 1414 |
+
|
| 1415 |
+
def set_moe_num_selects(self, num_selects):
|
| 1416 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1417 |
+
decoder_layer.set_moe_num_selects(num_selects)
|
| 1418 |
+
|
| 1419 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
| 1420 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1421 |
+
decoder_layer.set_moe_gate_use_softmax(use_softmax)
|
| 1422 |
+
|
| 1423 |
+
def set_moe_gate_use_balance(self, use_balance):
|
| 1424 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1425 |
+
decoder_layer.set_moe_gate_use_balance(use_balance)
|
| 1426 |
+
|
| 1427 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
| 1428 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1429 |
+
decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)
|
| 1430 |
+
|
| 1431 |
+
def set_moe_gate_add_noise(self, add_noise):
|
| 1432 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1433 |
+
decoder_layer.set_moe_gate_add_noise(add_noise)
|
| 1434 |
+
|
| 1435 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
| 1436 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1437 |
+
decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)
|
| 1438 |
+
|
| 1439 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
| 1440 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1441 |
+
decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
|
| 1442 |
+
|
| 1443 |
+
def set_moe_calculator_score_scale_factor(
|
| 1444 |
+
self, score_scale_factor, layer_index=None
|
| 1445 |
+
):
|
| 1446 |
+
if layer_index is None:
|
| 1447 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1448 |
+
decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
|
| 1449 |
+
else:
|
| 1450 |
+
self.layers[layer_index].set_moe_calculator_score_scale_factor(
|
| 1451 |
+
score_scale_factor
|
| 1452 |
+
)
|
| 1453 |
+
|
| 1454 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
| 1455 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1456 |
+
decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)
|
| 1457 |
+
|
| 1458 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
| 1459 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1460 |
+
decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)
|
| 1461 |
+
|
| 1462 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
| 1463 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1464 |
+
decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)
|
| 1465 |
+
|
| 1466 |
+
def reset_gate_network(self):
|
| 1467 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1468 |
+
decoder_layer.reset_gate_network()
|
| 1469 |
+
|
| 1470 |
+
def reset_experts(self):
|
| 1471 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1472 |
+
decoder_layer.reset_experts()
|
| 1473 |
+
|
| 1474 |
+
|
| 1475 |
+
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
|
| 1476 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1477 |
+
|
| 1478 |
+
def __init__(self, config):
|
| 1479 |
+
super().__init__(config)
|
| 1480 |
+
self.model = LlamaMoEModel(config)
|
| 1481 |
+
self.pretraining_tp = config.pretraining_tp
|
| 1482 |
+
self.vocab_size = config.vocab_size
|
| 1483 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1484 |
+
|
| 1485 |
+
# Initialize weights and apply final processing
|
| 1486 |
+
self.post_init()
|
| 1487 |
+
|
| 1488 |
+
def get_input_embeddings(self):
|
| 1489 |
+
return self.model.embed_tokens
|
| 1490 |
+
|
| 1491 |
+
def set_input_embeddings(self, value):
|
| 1492 |
+
self.model.embed_tokens = value
|
| 1493 |
+
|
| 1494 |
+
def get_output_embeddings(self):
|
| 1495 |
+
return self.lm_head
|
| 1496 |
+
|
| 1497 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1498 |
+
self.lm_head = new_embeddings
|
| 1499 |
+
|
| 1500 |
+
def set_decoder(self, decoder):
|
| 1501 |
+
self.model = decoder
|
| 1502 |
+
|
| 1503 |
+
def get_decoder(self):
|
| 1504 |
+
return self.model
|
| 1505 |
+
|
| 1506 |
+
def forward(
|
| 1507 |
+
self,
|
| 1508 |
+
input_ids=None,
|
| 1509 |
+
attention_mask=None,
|
| 1510 |
+
position_ids=None,
|
| 1511 |
+
past_key_values=None,
|
| 1512 |
+
inputs_embeds=None,
|
| 1513 |
+
labels=None,
|
| 1514 |
+
use_cache=None,
|
| 1515 |
+
output_attentions=None,
|
| 1516 |
+
output_hidden_states=None,
|
| 1517 |
+
return_dict=None,
|
| 1518 |
+
**kwargs,
|
| 1519 |
+
):
|
| 1520 |
+
output_attentions = (
|
| 1521 |
+
output_attentions
|
| 1522 |
+
if output_attentions is not None
|
| 1523 |
+
else self.config.output_attentions
|
| 1524 |
+
)
|
| 1525 |
+
output_hidden_states = (
|
| 1526 |
+
output_hidden_states
|
| 1527 |
+
if output_hidden_states is not None
|
| 1528 |
+
else self.config.output_hidden_states
|
| 1529 |
+
)
|
| 1530 |
+
return_dict = (
|
| 1531 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1535 |
+
outputs: BaseMoEModelOutputWithPast = self.model(
|
| 1536 |
+
input_ids=input_ids,
|
| 1537 |
+
attention_mask=attention_mask,
|
| 1538 |
+
position_ids=position_ids,
|
| 1539 |
+
past_key_values=past_key_values,
|
| 1540 |
+
inputs_embeds=inputs_embeds,
|
| 1541 |
+
use_cache=use_cache,
|
| 1542 |
+
output_attentions=output_attentions,
|
| 1543 |
+
output_hidden_states=output_hidden_states,
|
| 1544 |
+
return_dict=return_dict,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
hidden_states = outputs.last_hidden_state
|
| 1548 |
+
logits = self.lm_head(hidden_states)
|
| 1549 |
+
|
| 1550 |
+
loss = None
|
| 1551 |
+
if labels is not None:
|
| 1552 |
+
# Shift so that tokens < n predict n
|
| 1553 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1554 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1555 |
+
# Flatten the tokens
|
| 1556 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1557 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1558 |
+
shift_labels = shift_labels.view(-1)
|
| 1559 |
+
# Enable model parallelism
|
| 1560 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1561 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1562 |
+
if outputs.balance_loss is not None and outputs.balance_loss > 0:
|
| 1563 |
+
loss += outputs.balance_loss
|
| 1564 |
+
|
| 1565 |
+
if not return_dict:
|
| 1566 |
+
output = (logits,) + outputs[1:]
|
| 1567 |
+
return (loss,) + output if loss is not None else output
|
| 1568 |
+
|
| 1569 |
+
return MoECausalLMOutputWithPast(
|
| 1570 |
+
loss=loss,
|
| 1571 |
+
logits=logits,
|
| 1572 |
+
past_key_values=outputs.past_key_values,
|
| 1573 |
+
hidden_states=outputs.hidden_states,
|
| 1574 |
+
attentions=outputs.attentions,
|
| 1575 |
+
num_dropped_tokens=outputs.num_dropped_tokens,
|
| 1576 |
+
balance_loss=outputs.balance_loss,
|
| 1577 |
+
gate_load=outputs.gate_load,
|
| 1578 |
+
gate_importance=outputs.gate_importance,
|
| 1579 |
+
)
|
| 1580 |
+
|
| 1581 |
+
def prepare_inputs_for_generation(
|
| 1582 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1583 |
+
):
|
| 1584 |
+
if past_key_values:
|
| 1585 |
+
input_ids = input_ids[:, -1:]
|
| 1586 |
+
|
| 1587 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1588 |
+
if attention_mask is not None and position_ids is None:
|
| 1589 |
+
# create position_ids on the fly for batch generation
|
| 1590 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1591 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1592 |
+
if past_key_values:
|
| 1593 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 1594 |
+
|
| 1595 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1596 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1597 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1598 |
+
else:
|
| 1599 |
+
model_inputs = {"input_ids": input_ids}
|
| 1600 |
+
|
| 1601 |
+
model_inputs.update(
|
| 1602 |
+
{
|
| 1603 |
+
"position_ids": position_ids,
|
| 1604 |
+
"past_key_values": past_key_values,
|
| 1605 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1606 |
+
"attention_mask": attention_mask,
|
| 1607 |
+
}
|
| 1608 |
+
)
|
| 1609 |
+
return model_inputs
|
| 1610 |
+
|
| 1611 |
+
@staticmethod
|
| 1612 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1613 |
+
reordered_past = ()
|
| 1614 |
+
for layer_past in past_key_values:
|
| 1615 |
+
reordered_past += (
|
| 1616 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1617 |
+
)
|
| 1618 |
+
return reordered_past
|
| 1619 |
+
|
| 1620 |
+
def update_config(self):
|
| 1621 |
+
self.model.update_config()
|
| 1622 |
+
|
| 1623 |
+
def set_moe_num_selects(self, num_selects):
|
| 1624 |
+
self.model.set_moe_num_selects(num_selects)
|
| 1625 |
+
|
| 1626 |
+
def set_moe_gate_use_softmax(self, use_softmax):
|
| 1627 |
+
self.model.set_moe_gate_use_softmax(use_softmax)
|
| 1628 |
+
|
| 1629 |
+
def set_moe_gate_use_balance(self, use_balance):
|
| 1630 |
+
self.model.set_moe_gate_use_balance(use_balance)
|
| 1631 |
+
|
| 1632 |
+
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
|
| 1633 |
+
self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)
|
| 1634 |
+
|
| 1635 |
+
def set_moe_gate_add_noise(self, add_noise):
|
| 1636 |
+
self.model.set_moe_gate_add_noise(add_noise)
|
| 1637 |
+
|
| 1638 |
+
def set_moe_gate_noise_epsilon(self, noise_epsilon):
|
| 1639 |
+
self.model.set_moe_gate_noise_epsilon(noise_epsilon)
|
| 1640 |
+
|
| 1641 |
+
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
|
| 1642 |
+
self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
|
| 1643 |
+
|
| 1644 |
+
def set_moe_calculator_score_scale_factor(
|
| 1645 |
+
self, score_scale_factor, layer_index=None
|
| 1646 |
+
):
|
| 1647 |
+
self.model.set_moe_calculator_score_scale_factor(
|
| 1648 |
+
score_scale_factor, layer_index=layer_index
|
| 1649 |
+
)
|
| 1650 |
+
|
| 1651 |
+
def set_moe_calculator_drop_tokens(self, drop_tokens):
|
| 1652 |
+
self.model.set_moe_calculator_drop_tokens(drop_tokens)
|
| 1653 |
+
|
| 1654 |
+
def set_moe_calculator_dropped_padding(self, dropped_padding):
|
| 1655 |
+
self.model.set_moe_calculator_dropped_padding(dropped_padding)
|
| 1656 |
+
|
| 1657 |
+
def set_moe_calculator_capacity_factor(self, capacity_factor):
|
| 1658 |
+
self.model.set_moe_calculator_capacity_factor(capacity_factor)
|
| 1659 |
+
|
| 1660 |
+
def reset_gate_network(self):
|
| 1661 |
+
self.model.reset_gate_network()
|
| 1662 |
+
|
| 1663 |
+
def reset_experts(self):
|
| 1664 |
+
self.model.reset_experts()
|
pytorch_model-00001-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc55341907cb3cae3612ca9ac3846f6e5cb9759cb052dc9bc46ffbf7fb91d788
|
| 3 |
+
size 9979988714
|
pytorch_model-00002-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b45882fc23c63f873a357d820bbbbf898bfc75200ff0d7746c36f2b23e4d5bb8
|
| 3 |
+
size 3501432193
|
pytorch_model.bin.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"legacy": false,
|
| 22 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 23 |
+
"pad_token": null,
|
| 24 |
+
"padding_side": "right",
|
| 25 |
+
"sp_model_kwargs": {},
|
| 26 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"__type": "AddedToken",
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
},
|
| 35 |
+
"use_fast": true
|
| 36 |
+
}
|