Taka008 commited on
Commit
c738663
·
verified ·
1 Parent(s): bf69a3e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +232 -0
README.md ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ pipeline_tag: text-generation
21
+ library_name: transformers
22
+ inference: false
23
+ ---
24
+ # llm-jp-3-8x13b-instruct3
25
+
26
+ LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
27
+
28
+ This repository provides the **llm-jp-3-8x13b-instruct3** model.
29
+ For an overview of the LLM-jp-3 models across different parameter sizes, please refer to:
30
+ - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa)
31
+ - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731).
32
+
33
+
34
+ Checkpoints format: Hugging Face Transformers
35
+
36
+
37
+ ## Required Libraries and Their Versions
38
+
39
+ - torch>=2.3.0
40
+ - transformers>=4.40.1
41
+ - tokenizers>=0.19.1
42
+ - accelerate>=0.29.3
43
+ - flash-attn>=2.5.8
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM
50
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-8x13b-instruct3")
51
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-8x13b-instruct3", device_map="auto", torch_dtype=torch.bfloat16)
52
+ chat = [
53
+ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
54
+ {"role": "user", "content": "自然言語処理とは何か"},
55
+ ]
56
+ tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
57
+ with torch.no_grad():
58
+ output = model.generate(
59
+ tokenized_input,
60
+ max_new_tokens=100,
61
+ do_sample=True,
62
+ top_p=0.95,
63
+ temperature=0.7,
64
+ repetition_penalty=1.05,
65
+ )[0]
66
+ print(tokenizer.decode(output))
67
+ ```
68
+
69
+
70
+ ## Model Details
71
+
72
+ - **Model type:** Transformer-based Language Model
73
+ - **Total seen tokens:** 2.1T tokens
74
+
75
+ |Params|Layers|Hidden size|Heads|Routed Experts|Activated Experts|Context length|Embedding parameters|Non-embedding parameters|Activated parameters|Total parameters|
76
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
77
+ |8x1.8b|24|2048|16|8|2|4096|407,498,752|8,858,863,616|2,924,279,808|9,266,362,368|9,266,362,368|
78
+ |8x13b|40|5120|40|8|2|4096|1,018,746,880|72,144,081,920|22,200,806,400|73,162,828,800|
79
+
80
+ If you would like to learn more about the pretraining of the LLM-jp-3 MoE series, please refer to this [blog post](https://llm-jp.nii.ac.jp/blog/2025/03/27/moe3.html).
81
+
82
+ ## Tokenizer
83
+
84
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
85
+ The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
86
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
87
+
88
+ ## Datasets
89
+
90
+ ### Pre-training
91
+
92
+ The models have been pre-trained using a blend of the following datasets.
93
+
94
+ | Language | Dataset | Tokens|
95
+ |:---|:---|---:|
96
+ |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
97
+ ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
98
+ ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
99
+ ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
100
+ ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
101
+ |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
102
+ ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
103
+ ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
104
+ ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
105
+ ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
106
+ ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
107
+ ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
108
+ |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
109
+ |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
110
+ |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
111
+
112
+ ### Post-training
113
+
114
+ We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.
115
+
116
+ #### Supervised Fine-tuning
117
+ The datasets used for supervised fine-tuning are as follows:
118
+
119
+ | Language | Dataset | Description |
120
+ |:---|:---|:---|
121
+ |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. |
122
+ | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. |
123
+ | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. |
124
+ | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
125
+ | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
126
+ | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. |
127
+ | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. |
128
+ |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - |
129
+ | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - |
130
+ |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. |
131
+
132
+
133
+ #### Direct Preference Optimization
134
+
135
+ The datasets used for supervised fine-tuning are as follows:
136
+
137
+ | Language | Dataset | Description |
138
+ |:---|:---|:---|
139
+ |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. |
140
+ | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. |
141
+
142
+
143
+ ## Evaluation
144
+
145
+ ### llm-jp-eval (v1.4.1)
146
+
147
+ We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task.
148
+
149
+ | Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC | SUM |
150
+ | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
151
+ | [llm-jp/llm-jp-3-7.2b](https://huggingface.co/llm-jp/llm-jp-3-7.2b) | 0.455 | 0.400 | 0.266 | 0.350 | 0.547 | 0.430 | 0.809 | 0.362 | 0.545 | 0.814 | 0.028 |
152
+ | [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 0.514 | 0.447 | 0.245 | 0.435 | 0.693 | 0.510 | 0.826 | 0.588 | 0.497 | 0.838 | 0.059 |
153
+ | [llm-jp/llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | 0.543 | 0.408 | 0.266 | 0.515 | 0.763 | 0.670 | 0.823 | 0.574 | 0.569 | 0.829 | 0.015 |
154
+ | [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 0.613 | 0.517 | 0.271 | 0.570 | 0.873 | 0.730 | 0.844 | 0.728 | 0.601 | 0.883 | 0.112 |
155
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
156
+ | [llm-jp/llm-jp-3-8x1.8b](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b) | 0.454 | 0.387 | 0.241 | 0.265 | 0.530 | 0.510 | 0.810 | 0.476 | 0.537 | 0.755 | 0.026 |
157
+ | [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 0.513 | 0.448 | 0.230 | 0.405 | 0.643 | 0.560 | 0.815 | 0.566 | 0.561 | 0.837 | 0.066 |
158
+ | [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 0.515 | 0.452 | 0.227 | 0.425 | 0.683 | 0.540 | 0.821 | 0.558 | 0.545 | 0.819 | 0.075 |
159
+ | [llm-jp/llm-jp-3-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b) | 0.587 | 0.545 | 0.291 | 0.495 | 0.803 | 0.720 | 0.838 | 0.578 | 0.646 | 0.854 | 0.097 |
160
+ | [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 0.626 | 0.552 | 0.289 | 0.525 | 0.897 | 0.750 | 0.836 | 0.682 | 0.637 | 0.907 | 0.182 |
161
+ | [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 0.625 | 0.548 | 0.285 | 0.525 | 0.907 | 0.760 | 0.839 | 0.688 | 0.627 | 0.904 | 0.164 |
162
+
163
+ ### Japanese MT Bench
164
+
165
+ We evaluated the models using `gpt-4o-2024-08-06`.
166
+ The scores represent the average values obtained from five rounds of inference and evaluation.
167
+ For more details, please refer to the [codes](https://github.com/llm-jp/llm-jp-judge).
168
+
169
+ | Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing |
170
+ | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
171
+ | [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 5.79 | 3.46 | 5.94 | 8.15 | 3.95 | 4.46 | 7.51 | 6.23 | 6.66 |
172
+ | [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 6.36 | 4.24 | 6.66 | 8.11 | 4.58 | 5.74 | 7.44 | 6.76 | 7.36 |
173
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
174
+ | [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 5.47 | 3.47 | 4.90 | 7.78 | 3.51 | 4.38 | 6.84 | 6.35 | 6.54 |
175
+ | [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 5.52 | 3.60 | 5.23 | 7.81 | 3.87 | 4.53 | 6.40 | 5.98 | 6.72 |
176
+ | [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 6.62 | 4.50 | 6.53 | 8.56 | 5.30 | 6.03 | 7.86 | 7.10 | 7.12 |
177
+ | [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 6.58 | 4.90 | 6.41 | 8.32 | 5.37 | 5.20 | 7.75 | 7.24 | 7.48 |
178
+
179
+
180
+ ### AnswerCarefully-Eval
181
+
182
+ [AnswerCarefully-Eval](https://www.anlp.jp/proceedings/annual_meeting/2025/pdf_dir/Q4-19.pdf) assesses the safety of Japanese language model outputs using the LLM-as-a-Judge approach, based on the test set from [llm-jp/AnswerCarefully](https://huggingface.co/datasets/llm-jp/AnswerCarefully).
183
+ We evaluated the models using `gpt-4-0613`.
184
+ The scores represent the average values obtained from five rounds of inference and evaluation.
185
+
186
+
187
+ | Model name | Acceptance rate (%, ↑) | Violation rate (%, ↓) |
188
+ | :--- | ---: | ---: |
189
+ | [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 92.86 | 2.44 |
190
+ | [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 95.48 | 1.67 |
191
+ | --- | --- | --- |
192
+ | [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 86.13 | 7.56 |
193
+ | [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 92.20 | 2.20 |
194
+ | [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 88.63 | 6.01 |
195
+ | [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 94.35 | 1.55 |
196
+
197
+
198
+
199
+ ## Risks and Limitations
200
+
201
+ The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
202
+
203
+
204
+ ## Send Questions to
205
+
206
+ llm-jp(at)nii.ac.jp
207
+
208
+
209
+ ## License
210
+
211
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
212
+
213
+ ## How to cite
214
+
215
+ If you find our work helpful, please feel free to cite the paper.
216
+
217
+ ```
218
+ @inproceedings{
219
+ nakamura2025dropupcycling,
220
+ title={Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization},
221
+ author={Taishi Nakamura and Takuya Akiba and Kazuki Fujii and Yusuke Oda and Rio Yokota and Jun Suzuki},
222
+ booktitle={The Thirteenth International Conference on Learning Representations},
223
+ year={2025},
224
+ url={https://openreview.net/forum?id=gx1wHnf5Vp}
225
+ }
226
+ ```
227
+
228
+ ## Model Card Authors
229
+
230
+ *The names are listed in alphabetical order.*
231
+
232
+ Hirokazu Kiyomaru, Takashi Kodama and Taishi Nakamura.