Taka008 commited on
Commit
d1ee76f
·
verified ·
1 Parent(s): be23950

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +235 -0
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ pipeline_tag: text-generation
21
+ library_name: transformers
22
+ inference: false
23
+ ---
24
+ # llm-jp-3.1-8x13b-instruct4
25
+
26
+ LLM-jp-3.1 is a series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
27
+
28
+ Building upon the LLM-jp-3 series, the LLM-jp-3.1 models incorporate mid-training ([instruction pre-training](https://aclanthology.org/2024.emnlp-main.148/)), which significantly enhances their instruction-following capabilities compared to the original LLM-jp-3 models.
29
+
30
+ This repository provides the **llm-jp-3.1-8x13b-instruct4** model.
31
+ For an overview of the LLM-jp-3.1 models across different parameter sizes, please refer to:
32
+ - [LLM-jp-3.1 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-31-pre-trained-models-68368787c32e462c40a45f7b)
33
+ - [LLM-jp-3.1 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-31-fine-tuned-models-68368681b9b35de1c4ac8de4).
34
+
35
+ For more details on the training procedures and evaluation results, please refer to [this blog post](https://llm-jp.nii.ac.jp/ja/blog/blog-887/) (in Japanese).
36
+
37
+ Checkpoints format: Hugging Face Transformers
38
+
39
+
40
+ ## Required Libraries and Their Versions
41
+
42
+ - torch>=2.3.0
43
+ - transformers>=4.40.1
44
+ - tokenizers>=0.19.1
45
+ - accelerate>=0.29.3
46
+ - flash-attn>=2.5.8
47
+
48
+ ## Usage
49
+
50
+ ```python
51
+ import torch
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3.1-8x13b-instruct4")
54
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3.1-8x13b-instruct4", device_map="auto", torch_dtype=torch.bfloat16)
55
+ chat = [
56
+ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
57
+ {"role": "user", "content": "自然言語処理とは何か"},
58
+ ]
59
+ tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
60
+ with torch.no_grad():
61
+ output = model.generate(
62
+ tokenized_input,
63
+ max_new_tokens=100,
64
+ do_sample=True,
65
+ top_p=0.95,
66
+ temperature=0.7,
67
+ repetition_penalty=1.05,
68
+ )[0]
69
+ print(tokenizer.decode(output))
70
+ ```
71
+
72
+
73
+ ## Model Details
74
+
75
+ - **Model type:** Transformer-based Language Model
76
+ - **Architectures:**
77
+
78
+ Dense model:
79
+ |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters|
80
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|
81
+ |1.8b|24|2048|16|4096|407,498,752|1,459,718,144|
82
+ |13b|40|5120|40|4096|1,018,746,880|12,688,184,320|
83
+
84
+ MoE model:
85
+ |Params|Layers|Hidden size|Heads|Routed Experts|Activated Experts|Context length|Embedding parameters|Non-embedding parameters|Activated parameters|Total parameters|
86
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
87
+ |8x13b|40|5120|40|8|2|4096|1,018,746,880|72,144,081,920|22,200,806,400|73,162,828,800|
88
+
89
+
90
+ ## Tokenizer
91
+
92
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
93
+ The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
94
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
95
+
96
+ ## Datasets
97
+
98
+ ### Pre-training
99
+
100
+ The models have been pre-trained using a blend of the following datasets.
101
+
102
+ | Language | Dataset | Tokens|
103
+ |:---|:---|---:|
104
+ |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
105
+ ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
106
+ ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
107
+ ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
108
+ ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
109
+ |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
110
+ ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
111
+ ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
112
+ ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
113
+ ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
114
+ ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
115
+ ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
116
+ |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
117
+ |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
118
+ |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
119
+
120
+ ### Mid-training
121
+
122
+ In the LLM-jp-3.1 series, we performed continuous pre-training based on [Instruction Pre-Training](https://aclanthology.org/2024.emnlp-main.148/).
123
+ Instruction Pre-Training enhances a model’s ability to follow instructions by continuing pre-training on a large collection of instruction–response pairs.
124
+ We prepared approximately 90B tokens of instruction–response data and mixed it with our pre-training datasets, conducting continuous pre-training on a total of 400B tokens.
125
+ Each model was initialized from existing checkpoints ([llm-jp/llm-jp-3-1.8b](https://huggingface.co/llm-jp/llm-jp-3-1.8b), [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b), and [llm-jp/llm-jp-3-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b)) and underwent continuous instruction pre-training.
126
+ Since the LLM-jp-3 series was originally pre-trained on 2.1T tokens, the total pre-training token count amounts to 2.5T tokens.
127
+
128
+ Details of this training process will be released in a forthcoming paper. The instruction–response dataset used for this training will also be made publicly available.
129
+
130
+
131
+ ### Post-training
132
+
133
+ We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.
134
+
135
+ #### Supervised Fine-tuning
136
+ The datasets used for supervised fine-tuning are as follows:
137
+
138
+ | Language | Dataset | Description |
139
+ |:---|:---|:---|
140
+ |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. |
141
+ | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. |
142
+ | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. |
143
+ | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
144
+ | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
145
+ | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. |
146
+ | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. |
147
+ | |[jaster v1.4.1](https://github.com/llm-jp/llm-jp-eval/tree/v1.4.1)| - |
148
+ | |[extraction-wiki-ja](https://huggingface.co/datasets/llm-jp/extraction-wiki-ja)| A synthetic instruction dataset we created. |
149
+ |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - |
150
+ |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. |
151
+
152
+
153
+ #### Direct Preference Optimization
154
+
155
+ For Direct Preference Optimization (DPO), we adopted rejection sampling.
156
+ Prompts were sampled from the dataset used in SFT, and multiple responses were generated for each prompt.
157
+ These responses were then scored (by [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)), and DPO was performed by treating high-scoring responses as positive examples and low-scoring responses as negative examples.
158
+
159
+ We conducted DPO in two stages.
160
+ In the second stage, we additionally used [ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst), a Japanese preference dataset focused on safety.
161
+
162
+
163
+ ## Evaluation
164
+
165
+ ### MT Bench (Japanese and English)
166
+
167
+ We evaluated the models using `gpt-4o-2024-08-06`.
168
+ The scores represent the average values obtained from three rounds of inference and evaluation.
169
+ For more details, please refer to the [codes](https://github.com/llm-jp/llm-jp-judge/tree/v1.0.0).
170
+
171
+
172
+ | Model Name | JA | EN |
173
+ |:------------------------------------------------------------------------------------------------------------------------------|----------:|-------:|
174
+ | gpt-35-turbo-1106 | 6.48 | 7.56 |
175
+ | gpt-4-0613 | 7.29 | 7.72 |
176
+ | gpt-4o-2024-08-06 | 8.10 | 8.38 |
177
+ | [sbintuitions/sarashina2.2-1b-instruct-v0.1](https://huggingface.co/sbintuitions/sarashina2.2-1b-instruct-v0.1) | 5.30 | 5.66 |
178
+ | [sbintuitions/sarashina2.2-3b-instruct-v0.1](https://huggingface.co/sbintuitions/sarashina2.2-3b-instruct-v0.1) | 7.07 | 6.96 |
179
+ | [Rakuten/RakutenAI-2.0-8x7B-instruct](https://huggingface.co/Rakuten/RakutenAI-2.0-8x7B-instruct) | 6.68 | 6.33 |
180
+ | [cyberagent/calm3-22b-chat](https://huggingface.co/cyberagent/calm3-22b-chat) | 6.86 | 6.77 |
181
+ | [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) | 7.07 | 7.99 |
182
+ | [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 7.64 | 8.27 |
183
+ | [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) | 5.46 | 6.95 |
184
+ | [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) | 8.00 | 8.30 |
185
+ | [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) | 8.36 | 8.33 |
186
+ | [tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4) | 7.64 | 8.02 |
187
+ | [stockmark/Stockmark-2-100B-Instruct-beta](https://huggingface.co/stockmark/Stockmark-2-100B-Instruct-beta) | 7.42 | 7.17 |
188
+ | [llm-jp-3-1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct3) | 4.64 | 4.09 |
189
+ | [llm-jp-3-13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct3) | 6.21 | 6.13 |
190
+ | [llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 6.60 | 6.49 |
191
+ | [llm-jp-3.1-1.8b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-1.8b-instruct4) | 6.30 | 5.70 |
192
+ | [llm-jp-3.1-13b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-13b-instruct4) | 7.37 | 7.01 |
193
+ | [llm-jp-3.1-8x13b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-8x13b-instruct4) | 7.50 | 7.05 |
194
+
195
+
196
+ ### AnswerCarefully-Eval
197
+
198
+ [AnswerCarefully-Eval](https://www.anlp.jp/proceedings/annual_meeting/2025/pdf_dir/Q4-19.pdf) assesses the safety of Japanese language model outputs using the LLM-as-a-Judge approach, based on the test set from [llm-jp/AnswerCarefully](https://huggingface.co/datasets/llm-jp/AnswerCarefully).
199
+ We evaluated the models using `gpt-4o-2024-08-06`.
200
+ The scores represent the average values obtained from three rounds of inference and evaluation.
201
+ For more details, please refer to the [codes](https://github.com/llm-jp/llm-jp-judge/tree/v1.0.0).
202
+
203
+ | Model name | Score | Acceptance rate (%, ↑) | Violation rate (%, ↓) |
204
+ | :--- | ---: | ---: | ---: |
205
+ | gpt-35-turbo-1106 | 3.98 | 71.7 | 12.6 |
206
+ | gpt-4-0613 | 4.06 | 72.3 | 13.2 |
207
+ | gpt-4o-2024-08-06 | 4.09 | 72.7 | 12.5 |
208
+ | [llm-jp-3-1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct3) | 4.03 | 75.9 | 12.2 |
209
+ | [llm-jp-3-13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct3) | 4.37 | 88.4 | 6.5 |
210
+ | [llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 4.48 | 91.6 | 4.3 |
211
+ | [llm-jp-3.1-1.8b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-1.8b-instruct4) | 3.66 | 64.7 | 24.3 |
212
+ | [llm-jp-3.1-13b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-13b-instruct4) | 4.17 | 82.4 | 12.2 |
213
+ | [llm-jp-3.1-8x13b-instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-8x13b-instruct4) | 4.26 | 83.1 | 11.6 |
214
+
215
+
216
+
217
+ ## Risks and Limitations
218
+
219
+ The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
220
+
221
+
222
+ ## Send Questions to
223
+
224
+ llm-jp(at)nii.ac.jp
225
+
226
+
227
+ ## License
228
+
229
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
230
+
231
+ ## Model Card Authors
232
+
233
+ *The names are listed in alphabetical order.*
234
+
235
+ Hirokazu Kiyomaru and Takashi Kodama.