doberst commited on
Commit
7817db2
·
verified ·
1 Parent(s): b85c3a8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -3
README.md CHANGED
@@ -1,3 +1,31 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ inference: false
4
+ base_model: llmware/bling-tiny-llama-v0
5
+ base_model_relation: quantized
6
+ tags: [green, llmware-rag, p1, ov]
7
+ ---
8
+
9
+ # bling-tiny-llama-npu-ov
10
+
11
+ **bling-tiny-llama-npu-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel NPU.
12
+
13
+ This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the BLING/DRAGON series.
14
+
15
+ ### Model Description
16
+
17
+ - **Developed by:** llmware
18
+ - **Model type:** tinyllama
19
+ - **Parameters:** 1.1 billion
20
+ - **Quantization:** int4
21
+ - **Model Parent:** [llmware/bling-tiny-llama-v0](https://www.huggingface.co/llmware/bling-tiny-llama-v0)
22
+ - **Language(s) (NLP):** English
23
+ - **License:** Apache 2.0
24
+ - **Uses:** Fact-based question-answering, RAG
25
+ - **RAG Benchmark Accuracy Score:** 86.5
26
+
27
+
28
+ ## Model Card Contact
29
+ [llmware on github](https://www.github.com/llmware-ai/llmware)
30
+ [llmware on hf](https://www.huggingface.co/llmware)
31
+ [llmware website](https://www.llmware.ai)