File size: 2,563 Bytes
e540d3b dde3195 e540d3b 950df8f e540d3b 59e591b e540d3b 59e591b 0c39784 4801eb9 0c39784 59e591b ec402d0 4801eb9 59e591b ec402d0 59e591b ec402d0 59e591b ec402d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
tags:
- grpo
- trl
datasets:
- openai/gsm8k
metrics:
- accuracy
base_model:
- google/gemma-2-2b-it
---
# Model Card for Model ID
This model is a fine-tuned version of [Google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the dataset [GSM8k](https://huggingface.co/datasets/openai/gsm8k). It has been trained using GRPOTrainer from TRL.
## Quick start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer_name = "Google/gemma-2-2b-it"
model_name="lmassaron/gemma-2-2b-it-grpo-gsm8k"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
use_cache=True)
FORMAT = """<reasoning>\n</reasoning>\n<answer>\n</answer>\n"""
question = "Which is bigger? 9.11 or 9.9?"
generator = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
do_sample=False,
batch_size=1)
output = generator([{"role": "user", "content": FORMAT + question}],
max_new_tokens=256,
return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.1
- Transformers: 4.49.0
- Pytorch: 2.5.1+cu124
- Datasets: 3.3.1
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |