Upload modeling_aero.py with huggingface_hub
Browse files- modeling_aero.py +391 -0
modeling_aero.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Aero model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from transformers import AutoConfig, AutoModel
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.generation import GenerationMixin
|
29 |
+
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM
|
32 |
+
from transformers.utils import logging
|
33 |
+
|
34 |
+
from .configuration_aero import AeroConfig
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
# Copied from transformers.models.llava_next_video.modeling_llava_next_video.LlavaNextVideoCausalLMOutputWithPast with LlavaNextVideo->LlavaOnevision
|
41 |
+
class AeroCausalLMOutputWithPast(ModelOutput):
|
42 |
+
"""
|
43 |
+
Base class for Aero causal language model (or autoregressive) outputs.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
47 |
+
Language modeling loss (for next-token prediction).
|
48 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
49 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
50 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
51 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
52 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
53 |
+
|
54 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
55 |
+
`past_key_values` input) to speed up sequential decoding.
|
56 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
57 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
58 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
59 |
+
|
60 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
61 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
62 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
63 |
+
sequence_length)`.
|
64 |
+
|
65 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
66 |
+
heads.
|
67 |
+
audio_hidden_states (`torch.FloatTensor`, *optional*):
|
68 |
+
A `torch.FloatTensor`.
|
69 |
+
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
|
70 |
+
|
71 |
+
"""
|
72 |
+
|
73 |
+
loss: Optional[torch.FloatTensor] = None
|
74 |
+
logits: torch.FloatTensor = None
|
75 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
76 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
77 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
78 |
+
audio_hidden_states: Optional[torch.FloatTensor] = None
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
class AeroAudioMultiModalProjector(nn.Module):
|
83 |
+
def __init__(self, config: AeroConfig):
|
84 |
+
super().__init__()
|
85 |
+
self.linear = nn.Linear(
|
86 |
+
config.audio_config.d_model, config.text_config.hidden_size, bias=True
|
87 |
+
)
|
88 |
+
|
89 |
+
def forward(self, audio_features):
|
90 |
+
hidden_states = self.linear(audio_features)
|
91 |
+
return hidden_states
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
class AeroPreTrainedModel(PreTrainedModel):
|
96 |
+
config_class = AeroConfig
|
97 |
+
base_model_prefix = "language_model"
|
98 |
+
supports_gradient_checkpointing = True
|
99 |
+
_skip_keys_device_placement = "past_key_values"
|
100 |
+
_supports_flash_attn_2 = True
|
101 |
+
_supports_cache_class = True
|
102 |
+
_supports_static_cache = (
|
103 |
+
False # Qwen2 doesn't but llava has no reasons to not support
|
104 |
+
)
|
105 |
+
_supports_quantized_cache = True
|
106 |
+
_supports_sdpa = True
|
107 |
+
|
108 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextPreTrainedModel._init_weights
|
109 |
+
def _init_weights(self, module):
|
110 |
+
# important: this ported version of LlavaNext isn't meant for training from scratch - only
|
111 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
112 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
|
113 |
+
std = (
|
114 |
+
self.config.initializer_range
|
115 |
+
if hasattr(self.config, "initializer_range")
|
116 |
+
else self.config.text_config.initializer_range
|
117 |
+
)
|
118 |
+
|
119 |
+
if hasattr(module, "class_embedding"):
|
120 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
121 |
+
|
122 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
123 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
124 |
+
if module.bias is not None:
|
125 |
+
module.bias.data.zero_()
|
126 |
+
elif isinstance(module, (nn.Linear, nn.Conv1d)):
|
127 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
128 |
+
if module.bias is not None:
|
129 |
+
module.bias.data.zero_()
|
130 |
+
elif isinstance(module, nn.Embedding):
|
131 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
132 |
+
if module.padding_idx is not None:
|
133 |
+
module.weight.data[module.padding_idx].zero_()
|
134 |
+
|
135 |
+
|
136 |
+
class AeroForConditionalGeneration(AeroPreTrainedModel, GenerationMixin):
|
137 |
+
def __init__(self, config: AeroConfig):
|
138 |
+
super().__init__(config)
|
139 |
+
|
140 |
+
self.audio_tower_type = config.audio_config.model_type
|
141 |
+
self.audio_tower = AutoModel.from_config(config.audio_config)
|
142 |
+
self.audio_modal_projector = AeroAudioMultiModalProjector(config)
|
143 |
+
self.vocab_size = config.text_config.vocab_size
|
144 |
+
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
|
145 |
+
self.post_init()
|
146 |
+
|
147 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_input_embeddings
|
148 |
+
def get_input_embeddings(self):
|
149 |
+
return self.language_model.get_input_embeddings()
|
150 |
+
|
151 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_input_embeddings
|
152 |
+
def set_input_embeddings(self, value):
|
153 |
+
self.language_model.set_input_embeddings(value)
|
154 |
+
|
155 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_output_embeddings
|
156 |
+
def get_output_embeddings(self):
|
157 |
+
return self.language_model.get_output_embeddings()
|
158 |
+
|
159 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_output_embeddings
|
160 |
+
def set_output_embeddings(self, new_embeddings):
|
161 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
162 |
+
|
163 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_decoder
|
164 |
+
def set_decoder(self, decoder):
|
165 |
+
self.language_model.set_decoder(decoder)
|
166 |
+
|
167 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_decoder
|
168 |
+
def get_decoder(self):
|
169 |
+
return self.language_model.get_decoder()
|
170 |
+
|
171 |
+
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.tie_weights
|
172 |
+
def tie_weights(self):
|
173 |
+
return self.language_model.tie_weights()
|
174 |
+
|
175 |
+
def prepare_inputs_for_qwen_audio_encoder(
|
176 |
+
self,
|
177 |
+
audio_values: torch.Tensor,
|
178 |
+
audio_attention_mask: torch.Tensor,
|
179 |
+
audio_feat_lengths: torch.FloatTensor,
|
180 |
+
audio_output_lengths: torch.FloatTensor,
|
181 |
+
):
|
182 |
+
batch_size, _, max_mel_seq_len = audio_values.shape
|
183 |
+
max_seq_len = (max_mel_seq_len - 2) // 2 + 1
|
184 |
+
# Create a sequence tensor of shape (batch_size, max_seq_len)
|
185 |
+
seq_range = (
|
186 |
+
torch.arange(
|
187 |
+
0,
|
188 |
+
max_seq_len,
|
189 |
+
dtype=audio_feat_lengths.dtype,
|
190 |
+
device=audio_feat_lengths.device,
|
191 |
+
)
|
192 |
+
.unsqueeze(0)
|
193 |
+
.expand(batch_size, max_seq_len)
|
194 |
+
)
|
195 |
+
lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
|
196 |
+
# Create mask
|
197 |
+
padding_mask = seq_range >= lengths_expand
|
198 |
+
|
199 |
+
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
|
200 |
+
batch_size, 1, max_seq_len, max_seq_len
|
201 |
+
)
|
202 |
+
audio_attention_mask = audio_attention_mask_.to(
|
203 |
+
dtype=self.audio_tower.conv1.weight.dtype,
|
204 |
+
device=self.audio_tower.conv1.weight.device,
|
205 |
+
)
|
206 |
+
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
207 |
+
|
208 |
+
inputs = {
|
209 |
+
"input_features": audio_values,
|
210 |
+
"attention_mask": audio_attention_mask,
|
211 |
+
}
|
212 |
+
return inputs
|
213 |
+
|
214 |
+
def prepare_scattered_audio_values(
|
215 |
+
self,
|
216 |
+
audio_features,
|
217 |
+
audio_output_lengths,
|
218 |
+
):
|
219 |
+
# Audio feature is in (bs, max_seq_len, hidden_size)
|
220 |
+
# If directly masked scatter, the embed will be place one by one (order is incorret)
|
221 |
+
# We remove the padded values first
|
222 |
+
unpadded_audio_features = [
|
223 |
+
audio_feat[:audio_output_length]
|
224 |
+
for audio_feat, audio_output_length in zip(
|
225 |
+
audio_features, audio_output_lengths
|
226 |
+
)
|
227 |
+
]
|
228 |
+
# Concat the audio features
|
229 |
+
# Should exactly have audio_mask.sum() values
|
230 |
+
unpadded_audio_features = torch.concatenate(unpadded_audio_features, dim=0)
|
231 |
+
return unpadded_audio_features
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
input_ids: torch.LongTensor = None,
|
236 |
+
audio_values: torch.FloatTensor = None,
|
237 |
+
audio_attention_mask: Optional[torch.Tensor] = None,
|
238 |
+
attention_mask: Optional[torch.Tensor] = None,
|
239 |
+
position_ids: Optional[torch.LongTensor] = None,
|
240 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
241 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
242 |
+
labels: Optional[torch.LongTensor] = None,
|
243 |
+
use_cache: Optional[bool] = None,
|
244 |
+
output_attentions: Optional[bool] = None,
|
245 |
+
output_hidden_states: Optional[bool] = None,
|
246 |
+
return_dict: Optional[bool] = None,
|
247 |
+
cache_position: Optional[torch.LongTensor] = None,
|
248 |
+
logits_to_keep: int = 0,
|
249 |
+
) -> Union[Tuple, AeroCausalLMOutputWithPast]:
|
250 |
+
output_attentions = (
|
251 |
+
output_attentions
|
252 |
+
if output_attentions is not None
|
253 |
+
else self.config.output_attentions
|
254 |
+
)
|
255 |
+
output_hidden_states = (
|
256 |
+
output_hidden_states
|
257 |
+
if output_hidden_states is not None
|
258 |
+
else self.config.output_hidden_states
|
259 |
+
)
|
260 |
+
return_dict = (
|
261 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
262 |
+
)
|
263 |
+
|
264 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
265 |
+
raise ValueError(
|
266 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
267 |
+
)
|
268 |
+
|
269 |
+
if inputs_embeds is None:
|
270 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
271 |
+
|
272 |
+
# Embed audio features
|
273 |
+
if audio_values is not None:
|
274 |
+
(
|
275 |
+
audio_feat_lengths,
|
276 |
+
audio_output_lengths,
|
277 |
+
) = self.audio_tower._get_feat_extract_output_lengths(
|
278 |
+
audio_attention_mask.sum(-1)
|
279 |
+
)
|
280 |
+
inputs = self.prepare_inputs_for_qwen_audio_encoder(
|
281 |
+
audio_values=audio_values,
|
282 |
+
audio_attention_mask=audio_attention_mask,
|
283 |
+
audio_feat_lengths=audio_feat_lengths,
|
284 |
+
audio_output_lengths=audio_output_lengths,
|
285 |
+
)
|
286 |
+
|
287 |
+
audio_outputs = self.audio_tower(**inputs)
|
288 |
+
selected_audio_feature = audio_outputs.last_hidden_state
|
289 |
+
audio_features = self.audio_modal_projector(selected_audio_feature)
|
290 |
+
n_audio_tokens = (input_ids == self.config.audio_token_index).sum().item()
|
291 |
+
n_audio_features = audio_output_lengths.sum()
|
292 |
+
if n_audio_tokens != n_audio_features:
|
293 |
+
raise ValueError(
|
294 |
+
f"Audio features and image tokens do not match: tokens: {n_audio_tokens}, features {n_audio_features}"
|
295 |
+
)
|
296 |
+
audio_mask = (
|
297 |
+
(input_ids == self.config.audio_token_index)
|
298 |
+
.unsqueeze(-1)
|
299 |
+
.expand_as(inputs_embeds)
|
300 |
+
.to(inputs_embeds.device)
|
301 |
+
)
|
302 |
+
audio_features = audio_features.to(
|
303 |
+
inputs_embeds.device, inputs_embeds.dtype
|
304 |
+
)
|
305 |
+
audio_features = self.prepare_scattered_audio_values(
|
306 |
+
audio_features, audio_output_lengths
|
307 |
+
)
|
308 |
+
inputs_embeds = inputs_embeds.masked_scatter(audio_mask, audio_features)
|
309 |
+
|
310 |
+
outputs = self.language_model(
|
311 |
+
attention_mask=attention_mask,
|
312 |
+
position_ids=position_ids,
|
313 |
+
past_key_values=past_key_values,
|
314 |
+
inputs_embeds=inputs_embeds,
|
315 |
+
use_cache=use_cache,
|
316 |
+
output_attentions=output_attentions,
|
317 |
+
output_hidden_states=output_hidden_states,
|
318 |
+
return_dict=return_dict,
|
319 |
+
cache_position=cache_position,
|
320 |
+
logits_to_keep=logits_to_keep,
|
321 |
+
labels=labels,
|
322 |
+
)
|
323 |
+
|
324 |
+
logits = outputs[0]
|
325 |
+
loss = outputs.get("loss", None)
|
326 |
+
if labels is not None and loss is None:
|
327 |
+
# Shift so that tokens < n predict n
|
328 |
+
if attention_mask is not None:
|
329 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
330 |
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
331 |
+
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
|
332 |
+
logits.device
|
333 |
+
)
|
334 |
+
shift_logits = logits[..., :-1, :][
|
335 |
+
shift_attention_mask.to(logits.device) != 0
|
336 |
+
].contiguous()
|
337 |
+
shift_labels = labels[..., 1:][
|
338 |
+
shift_attention_mask.to(labels.device) != 0
|
339 |
+
].contiguous()
|
340 |
+
else:
|
341 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
342 |
+
shift_labels = labels[..., 1:].contiguous()
|
343 |
+
# Flatten the tokens
|
344 |
+
loss_fct = nn.CrossEntropyLoss()
|
345 |
+
loss = loss_fct(
|
346 |
+
shift_logits.view(-1, shift_logits.size(-1)),
|
347 |
+
shift_labels.view(-1).to(shift_logits.device),
|
348 |
+
)
|
349 |
+
|
350 |
+
if not return_dict:
|
351 |
+
output = (logits,) + outputs[1:]
|
352 |
+
return (loss,) + output if loss is not None else output
|
353 |
+
|
354 |
+
return AeroCausalLMOutputWithPast(
|
355 |
+
loss=loss,
|
356 |
+
logits=logits,
|
357 |
+
past_key_values=outputs.past_key_values,
|
358 |
+
hidden_states=outputs.hidden_states,
|
359 |
+
attentions=outputs.attentions,
|
360 |
+
audio_hidden_states=audio_features if audio_values is not None else None,
|
361 |
+
)
|
362 |
+
|
363 |
+
def prepare_inputs_for_generation(
|
364 |
+
self,
|
365 |
+
input_ids,
|
366 |
+
past_key_values=None,
|
367 |
+
inputs_embeds=None,
|
368 |
+
attention_mask=None,
|
369 |
+
cache_position=None,
|
370 |
+
logits_to_keep=None,
|
371 |
+
audio_values=None,
|
372 |
+
audio_attention_mask=None,
|
373 |
+
**kwargs,
|
374 |
+
):
|
375 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
376 |
+
|
377 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
378 |
+
input_ids,
|
379 |
+
past_key_values=past_key_values,
|
380 |
+
inputs_embeds=inputs_embeds,
|
381 |
+
attention_mask=attention_mask,
|
382 |
+
cache_position=cache_position,
|
383 |
+
logits_to_keep=logits_to_keep,
|
384 |
+
**kwargs,
|
385 |
+
)
|
386 |
+
|
387 |
+
if cache_position[0] == 0:
|
388 |
+
model_inputs["audio_values"] = audio_values
|
389 |
+
model_inputs["audio_attention_mask"] = audio_attention_mask
|
390 |
+
|
391 |
+
return model_inputs
|