Upload processing_aero.py with huggingface_hub
Browse files- processing_aero.py +235 -0
processing_aero.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for LLaVa-Onevision.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
from transformers.feature_extraction_utils import BatchFeature
|
25 |
+
from transformers.image_utils import ImageInput, VideoInput
|
26 |
+
from transformers.models.auto import AutoFeatureExtractor
|
27 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
28 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
class AeroProcessorKwargs(ProcessingKwargs, total=False):
|
35 |
+
_defaults = {
|
36 |
+
"text_kwargs": {
|
37 |
+
"padding": False,
|
38 |
+
},
|
39 |
+
"audio_kwargs": {},
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
class AeroProcessor(ProcessorMixin):
|
44 |
+
attributes = ["tokenizer", "audio_processor"]
|
45 |
+
valid_kwargs = [
|
46 |
+
"chat_template",
|
47 |
+
"audio_token",
|
48 |
+
]
|
49 |
+
tokenizer_class = "AutoTokenizer"
|
50 |
+
audio_processor_class = "AutoFeatureExtractor"
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
tokenizer=None,
|
55 |
+
audio_processor=None,
|
56 |
+
chat_template=None,
|
57 |
+
audio_token="<|AUDIO|>",
|
58 |
+
**kwargs,
|
59 |
+
):
|
60 |
+
self.audio_token = (
|
61 |
+
tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
|
62 |
+
)
|
63 |
+
if chat_template is None:
|
64 |
+
chat_template = self.default_chat_template
|
65 |
+
super().__init__(
|
66 |
+
tokenizer,
|
67 |
+
audio_processor,
|
68 |
+
chat_template=chat_template,
|
69 |
+
)
|
70 |
+
|
71 |
+
def __call__(
|
72 |
+
self,
|
73 |
+
text: Union[
|
74 |
+
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
75 |
+
] = None,
|
76 |
+
audios: Union[np.ndarray, List[np.ndarray]] = None,
|
77 |
+
videos: VideoInput = None,
|
78 |
+
images: ImageInput = None,
|
79 |
+
sampling_rate: Optional[int] = None,
|
80 |
+
**kwargs: Unpack[AeroProcessorKwargs],
|
81 |
+
) -> BatchFeature:
|
82 |
+
"""
|
83 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
84 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
85 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
86 |
+
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
87 |
+
of the above two methods for more information.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
91 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
92 |
+
tensor. Both channels-first and channels-last formats are supported.
|
93 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
94 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
95 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
96 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
97 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
98 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
102 |
+
|
103 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
104 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
105 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
106 |
+
`None`).
|
107 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
108 |
+
- **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
|
109 |
+
- **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
|
110 |
+
"""
|
111 |
+
|
112 |
+
output_kwargs = self._merge_kwargs(
|
113 |
+
AeroProcessorKwargs,
|
114 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
115 |
+
**kwargs,
|
116 |
+
)
|
117 |
+
|
118 |
+
if isinstance(text, str):
|
119 |
+
text = [text]
|
120 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
121 |
+
raise ValueError(
|
122 |
+
"Invalid input text. Please provide a string, or a list of strings"
|
123 |
+
)
|
124 |
+
|
125 |
+
audio_inputs = {}
|
126 |
+
|
127 |
+
if audios is not None:
|
128 |
+
audio_inputs = self.audio_processor(
|
129 |
+
audios,
|
130 |
+
sampling_rate=sampling_rate,
|
131 |
+
return_attention_mask=True,
|
132 |
+
padding="max_length",
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
audio_inputs["audio_attention_mask"] = audio_inputs.pop(
|
136 |
+
"attention_mask"
|
137 |
+
) # rename attention_mask to prevent conflicts later on
|
138 |
+
audio_inputs["audio_values"] = audio_inputs.pop(
|
139 |
+
"input_features"
|
140 |
+
) # rename input_features to audio_features for clarification
|
141 |
+
# Computes the output length of the convolutional layers and the output length of the audio encoder
|
142 |
+
input_lengths = (audio_inputs["audio_attention_mask"].sum(-1) - 1) // 2 + 1
|
143 |
+
num_audio_tokens = (input_lengths - 2) // 2 + 1
|
144 |
+
text = self.expand_audio_tokens(text, num_audio_tokens, self.audio_token)
|
145 |
+
|
146 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
147 |
+
return BatchFeature(data={**text_inputs, **audio_inputs})
|
148 |
+
|
149 |
+
def expand_audio_tokens(
|
150 |
+
self,
|
151 |
+
text: List[TextInput],
|
152 |
+
num_audio_tokens: List[int],
|
153 |
+
special_token: str,
|
154 |
+
):
|
155 |
+
prompt_strings = []
|
156 |
+
current_audio_idx = 0
|
157 |
+
for sample in text:
|
158 |
+
while special_token in sample:
|
159 |
+
num_audio_token = num_audio_tokens[current_audio_idx]
|
160 |
+
sample = sample.replace(
|
161 |
+
special_token, "<placeholder>" * num_audio_token, 1
|
162 |
+
)
|
163 |
+
current_audio_idx += 1
|
164 |
+
prompt_strings.append(sample)
|
165 |
+
text = [
|
166 |
+
sample.replace("<placeholder>", special_token) for sample in prompt_strings
|
167 |
+
]
|
168 |
+
return text
|
169 |
+
|
170 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
171 |
+
def batch_decode(self, *args, **kwargs):
|
172 |
+
"""
|
173 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
174 |
+
refer to the docstring of this method for more information.
|
175 |
+
"""
|
176 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
177 |
+
|
178 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
179 |
+
def decode(self, *args, **kwargs):
|
180 |
+
"""
|
181 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
182 |
+
the docstring of this method for more information.
|
183 |
+
"""
|
184 |
+
return self.tokenizer.decode(*args, **kwargs)
|
185 |
+
|
186 |
+
def batch_encode(self, *args, **kwargs):
|
187 |
+
"""
|
188 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_encode`]. Please
|
189 |
+
refer to the docstring of this method for more information.
|
190 |
+
"""
|
191 |
+
return self.tokenizer.batch_encode(*args, **kwargs)
|
192 |
+
|
193 |
+
def encode(self, *args, **kwargs):
|
194 |
+
"""
|
195 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.encode`]. Please refer to
|
196 |
+
the docstring of this method for more information.
|
197 |
+
"""
|
198 |
+
return self.tokenizer.encode(*args, **kwargs)
|
199 |
+
|
200 |
+
@property
|
201 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
202 |
+
def model_input_names(self):
|
203 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
204 |
+
image_processor_input_names = self.image_processor.model_input_names
|
205 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
206 |
+
|
207 |
+
@property
|
208 |
+
def default_chat_template(self):
|
209 |
+
# fmt: off
|
210 |
+
return (
|
211 |
+
"{% set audio_count = namespace(value=0) %}"
|
212 |
+
"{% for message in messages %}"
|
213 |
+
"{% if loop.first and message['role'] != 'system' %}"
|
214 |
+
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
215 |
+
"{% endif %}"
|
216 |
+
"<|im_start|>{{ message['role'] }}\n"
|
217 |
+
"{% if message['content'] is string %}"
|
218 |
+
"{{ message['content'] }}<|im_end|>\n"
|
219 |
+
"{% else %}"
|
220 |
+
"{% for content in message['content'] %}"
|
221 |
+
"{% if 'audio' in content or 'audio_url' in content %}"
|
222 |
+
"{% set audio_count.value = audio_count.value + 1 %}"
|
223 |
+
"<|AUDIO|>\n"
|
224 |
+
"{% elif 'text' in content %}"
|
225 |
+
"{{ content['text'] }}"
|
226 |
+
"{% endif %}"
|
227 |
+
"{% endfor %}"
|
228 |
+
"<|im_end|>\n"
|
229 |
+
"{% endif %}"
|
230 |
+
"{% endfor %}"
|
231 |
+
"{% if add_generation_prompt %}"
|
232 |
+
"<|im_start|>assistant\n"
|
233 |
+
"{% endif %}"
|
234 |
+
)
|
235 |
+
# fmt: on
|