asahi417 commited on
Commit
2a45a27
1 Parent(s): c224e9d

model update

Browse files
README.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: it
11
+ datasets:
12
+ - lmqg/qg_itquad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - question generation
16
+ - answer extraction
17
+ widget:
18
+ - text: "generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
19
+ example_title: "Question Generation Example 1"
20
+ - text: "generate question: L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
21
+ example_title: "Question Generation Example 2"
22
+ - text: "generate question: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
23
+ example_title: "Question Generation Example 3"
24
+ - text: "extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento."
25
+ example_title: "Answer Extraction Example 1"
26
+ - text: "extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda, Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford, Chrysler e GM. In seguito i produttori americani introdussero le loro sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC S-15), ponendo fine alla loro politica di importazione vincolata."
27
+ example_title: "Answer Extraction Example 2"
28
+ model-index:
29
+ - name: lmqg/mt5-base-itquad-qg-ae
30
+ results:
31
+ - task:
32
+ name: Text2text Generation
33
+ type: text2text-generation
34
+ dataset:
35
+ name: lmqg/qg_itquad
36
+ type: default
37
+ args: default
38
+ metrics:
39
+ - name: BLEU4 (Question Generation)
40
+ type: bleu4_question_generation
41
+ value: 7.72
42
+ - name: ROUGE-L (Question Generation)
43
+ type: rouge_l_question_generation
44
+ value: 22.81
45
+ - name: METEOR (Question Generation)
46
+ type: meteor_question_generation
47
+ value: 18.56
48
+ - name: BERTScore (Question Generation)
49
+ type: bertscore_question_generation
50
+ value: 81.15
51
+ - name: MoverScore (Question Generation)
52
+ type: moverscore_question_generation
53
+ value: 57.15
54
+ - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
55
+ type: qa_aligned_f1_score_bertscore_question_answer_generation
56
+ value: 81.98
57
+ - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
58
+ type: qa_aligned_recall_bertscore_question_answer_generation
59
+ value: 82.83
60
+ - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
61
+ type: qa_aligned_precision_bertscore_question_answer_generation
62
+ value: 81.19
63
+ - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
64
+ type: qa_aligned_f1_score_moverscore_question_answer_generation
65
+ value: 56.35
66
+ - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
67
+ type: qa_aligned_recall_moverscore_question_answer_generation
68
+ value: 56.75
69
+ - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
70
+ type: qa_aligned_precision_moverscore_question_answer_generation
71
+ value: 56.0
72
+ - name: BLEU4 (Answer Extraction)
73
+ type: bleu4_answer_extraction
74
+ value: 26.87
75
+ - name: ROUGE-L (Answer Extraction)
76
+ type: rouge_l_answer_extraction
77
+ value: 45.82
78
+ - name: METEOR (Answer Extraction)
79
+ type: meteor_answer_extraction
80
+ value: 43.51
81
+ - name: BERTScore (Answer Extraction)
82
+ type: bertscore_answer_extraction
83
+ value: 91.12
84
+ - name: MoverScore (Answer Extraction)
85
+ type: moverscore_answer_extraction
86
+ value: 82.62
87
+ - name: AnswerF1Score (Answer Extraction)
88
+ type: answer_f1_score__answer_extraction
89
+ value: 74.04
90
+ - name: AnswerExactMatch (Answer Extraction)
91
+ type: answer_exact_match_answer_extraction
92
+ value: 60.7
93
+ ---
94
+
95
+ # Model Card of `lmqg/mt5-base-itquad-qg-ae`
96
+ This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
97
+
98
+
99
+ ### Overview
100
+ - **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
101
+ - **Language:** it
102
+ - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
103
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
104
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
105
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
106
+
107
+ ### Usage
108
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
109
+ ```python
110
+ from lmqg import TransformersQG
111
+
112
+ # initialize model
113
+ model = TransformersQG(language="it", model="lmqg/mt5-base-itquad-qg-ae")
114
+
115
+ # model prediction
116
+ question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
117
+
118
+ ```
119
+
120
+ - With `transformers`
121
+ ```python
122
+ from transformers import pipeline
123
+
124
+ pipe = pipeline("text2text-generation", "lmqg/mt5-base-itquad-qg-ae")
125
+
126
+ # answer extraction
127
+ answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
128
+
129
+ # question generation
130
+ question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
131
+
132
+ ```
133
+
134
+ ## Evaluation
135
+
136
+
137
+ - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json)
138
+
139
+ | | Score | Type | Dataset |
140
+ |:-----------|--------:|:--------|:-----------------------------------------------------------------|
141
+ | BERTScore | 81.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
142
+ | Bleu_1 | 23.3 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
143
+ | Bleu_2 | 15.39 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
144
+ | Bleu_3 | 10.74 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
145
+ | Bleu_4 | 7.72 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
146
+ | METEOR | 18.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
147
+ | MoverScore | 57.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
148
+ | ROUGE_L | 22.81 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
149
+
150
+
151
+ - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json)
152
+
153
+ | | Score | Type | Dataset |
154
+ |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
155
+ | QAAlignedF1Score (BERTScore) | 81.98 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
156
+ | QAAlignedF1Score (MoverScore) | 56.35 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
157
+ | QAAlignedPrecision (BERTScore) | 81.19 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
158
+ | QAAlignedPrecision (MoverScore) | 56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
159
+ | QAAlignedRecall (BERTScore) | 82.83 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
160
+ | QAAlignedRecall (MoverScore) | 56.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
161
+
162
+
163
+ - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)
164
+
165
+ | | Score | Type | Dataset |
166
+ |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
167
+ | AnswerExactMatch | 60.7 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
168
+ | AnswerF1Score | 74.04 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
169
+ | BERTScore | 91.12 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
170
+ | Bleu_1 | 40.14 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
171
+ | Bleu_2 | 34.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
172
+ | Bleu_3 | 30.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
173
+ | Bleu_4 | 26.87 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
174
+ | METEOR | 43.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
175
+ | MoverScore | 82.62 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
176
+ | ROUGE_L | 45.82 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
177
+
178
+
179
+
180
+ ## Training hyperparameters
181
+
182
+ The following hyperparameters were used during fine-tuning:
183
+ - dataset_path: lmqg/qg_itquad
184
+ - dataset_name: default
185
+ - input_types: ['paragraph_answer', 'paragraph_sentence']
186
+ - output_types: ['question', 'answer']
187
+ - prefix_types: ['qg', 'ae']
188
+ - model: google/mt5-base
189
+ - max_length: 512
190
+ - max_length_output: 32
191
+ - epoch: 13
192
+ - batch: 32
193
+ - lr: 0.0005
194
+ - fp16: False
195
+ - random_seed: 1
196
+ - gradient_accumulation_steps: 2
197
+ - label_smoothing: 0.15
198
+
199
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/trainer_config.json).
200
+
201
+ ## Citation
202
+ ```
203
+ @inproceedings{ushio-etal-2022-generative,
204
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
205
+ author = "Ushio, Asahi and
206
+ Alva-Manchego, Fernando and
207
+ Camacho-Collados, Jose",
208
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
209
+ month = dec,
210
+ year = "2022",
211
+ address = "Abu Dhabi, U.A.E.",
212
+ publisher = "Association for Computational Linguistics",
213
+ }
214
+
215
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lmqg_output/mt5-base-itquad-qg-ae/best_model",
3
  "add_prefix": true,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
 
1
  {
2
+ "_name_or_path": "lmqg_output/mt5-base-itquad-multitask/model_dpyopu/epoch_5",
3
  "add_prefix": true,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"test": {"QAAlignedF1Score (BERTScore)": 0.8197821918119429, "QAAlignedRecall (BERTScore)": 0.8283015506704319, "QAAlignedPrecision (BERTScore)": 0.8119330094011925, "QAAlignedF1Score (MoverScore)": 0.5634931819025477, "QAAlignedRecall (MoverScore)": 0.5675011475834276, "QAAlignedPrecision (MoverScore)": 0.5599723189991794}, "validation": {"QAAlignedF1Score (BERTScore)": 0.8080914056798597, "QAAlignedRecall (BERTScore)": 0.835892198567779, "QAAlignedPrecision (BERTScore)": 0.782811450155633, "QAAlignedF1Score (MoverScore)": 0.5546692619043326, "QAAlignedRecall (MoverScore)": 0.5736236114784989, "QAAlignedPrecision (MoverScore)": 0.5379608477857356}}
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.2334974939122243, "Bleu_2": 0.156174010451155, "Bleu_3": 0.1099914311850735, "Bleu_4": 0.07979891216001947}, "test": {"Bleu_1": 0.22293325950849457, "Bleu_2": 0.1462268530043443, "Bleu_3": 0.10163482953182741, "Bleu_4": 0.07280043078401346}}
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.401537765716852, "Bleu_2": 0.34393774917572884, "Bleu_3": 0.3069682871144937, "Bleu_4": 0.2737440947081987, "METEOR": 0.4515736964433969, "ROUGE_L": 0.4445944184159832, "BERTScore": 0.9251149244550682, "MoverScore": 0.8532652688863316, "AnswerF1Score": 77.91003455014469, "AnswerExactMatch": 67.1441713760021}, "test": {"Bleu_1": 0.40144028805759546, "Bleu_2": 0.34560648207657074, "Bleu_3": 0.30562890523271946, "Bleu_4": 0.2687142292283542, "METEOR": 0.43510721492162563, "ROUGE_L": 0.45822440491960914, "BERTScore": 0.9112053436250032, "MoverScore": 0.8262344055230554, "AnswerF1Score": 74.04229123954505, "AnswerExactMatch": 60.70442896569851}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.2344813865063198, "Bleu_2": 0.15699408592735528, "Bleu_3": 0.1106607328860182, "Bleu_4": 0.08035563261097958, "METEOR": 0.19371865879446926, "ROUGE_L": 0.231225836880753, "BERTScore": 0.8181939477897686, "MoverScore": 0.5780999868134854}, "test": {"Bleu_1": 0.23296061199826076, "Bleu_2": 0.15391507744735322, "Bleu_3": 0.10742891259850533, "Bleu_4": 0.0771747478749581, "METEOR": 0.18559685067261858, "ROUGE_L": 0.22806009694437826, "BERTScore": 0.8115219126986919, "MoverScore": 0.5714625839387732}}
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f222cdf8449a84cfeb20756209081de38d9a04ab748cb3dcd27b8f00f8463cd
3
- size 2329628621
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d696980cc2a88f49a36154832240a73727dff18bf5d01d75b2d686b5a83bebd
3
+ size 2329632589
tokenizer_config.json CHANGED
@@ -2,7 +2,7 @@
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
- "name_or_path": "lmqg_output/mt5-base-itquad-qg-ae/best_model",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
 
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
+ "name_or_path": "lmqg_output/mt5-base-itquad-multitask/model_dpyopu/epoch_5",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qg_itquad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "google/mt5-base", "max_length": 512, "max_length_output": 32, "epoch": 13, "batch": 32, "lr": 0.0005, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 2, "label_smoothing": 0.15}