model update
Browse files- README.md +215 -0
- config.json +1 -1
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: it
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_itquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
- answer extraction
|
17 |
+
widget:
|
18 |
+
- text: "generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
|
19 |
+
example_title: "Question Generation Example 1"
|
20 |
+
- text: "generate question: L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
|
21 |
+
example_title: "Question Generation Example 2"
|
22 |
+
- text: "generate question: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
|
23 |
+
example_title: "Question Generation Example 3"
|
24 |
+
- text: "extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento."
|
25 |
+
example_title: "Answer Extraction Example 1"
|
26 |
+
- text: "extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda, Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford, Chrysler e GM. In seguito i produttori americani introdussero le loro sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC S-15), ponendo fine alla loro politica di importazione vincolata."
|
27 |
+
example_title: "Answer Extraction Example 2"
|
28 |
+
model-index:
|
29 |
+
- name: lmqg/mt5-base-itquad-qg-ae
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
name: Text2text Generation
|
33 |
+
type: text2text-generation
|
34 |
+
dataset:
|
35 |
+
name: lmqg/qg_itquad
|
36 |
+
type: default
|
37 |
+
args: default
|
38 |
+
metrics:
|
39 |
+
- name: BLEU4 (Question Generation)
|
40 |
+
type: bleu4_question_generation
|
41 |
+
value: 7.72
|
42 |
+
- name: ROUGE-L (Question Generation)
|
43 |
+
type: rouge_l_question_generation
|
44 |
+
value: 22.81
|
45 |
+
- name: METEOR (Question Generation)
|
46 |
+
type: meteor_question_generation
|
47 |
+
value: 18.56
|
48 |
+
- name: BERTScore (Question Generation)
|
49 |
+
type: bertscore_question_generation
|
50 |
+
value: 81.15
|
51 |
+
- name: MoverScore (Question Generation)
|
52 |
+
type: moverscore_question_generation
|
53 |
+
value: 57.15
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation
|
56 |
+
value: 81.98
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation
|
59 |
+
value: 82.83
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation
|
62 |
+
value: 81.19
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation
|
65 |
+
value: 56.35
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation
|
68 |
+
value: 56.75
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation
|
71 |
+
value: 56.0
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 26.87
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 45.82
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 43.51
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 91.12
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 82.62
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 74.04
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 60.7
|
93 |
+
---
|
94 |
+
|
95 |
+
# Model Card of `lmqg/mt5-base-itquad-qg-ae`
|
96 |
+
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
+
|
98 |
+
|
99 |
+
### Overview
|
100 |
+
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
|
101 |
+
- **Language:** it
|
102 |
+
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
|
103 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
104 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
105 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
106 |
+
|
107 |
+
### Usage
|
108 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
109 |
+
```python
|
110 |
+
from lmqg import TransformersQG
|
111 |
+
|
112 |
+
# initialize model
|
113 |
+
model = TransformersQG(language="it", model="lmqg/mt5-base-itquad-qg-ae")
|
114 |
+
|
115 |
+
# model prediction
|
116 |
+
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
|
117 |
+
|
118 |
+
```
|
119 |
+
|
120 |
+
- With `transformers`
|
121 |
+
```python
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-base-itquad-qg-ae")
|
125 |
+
|
126 |
+
# answer extraction
|
127 |
+
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
|
128 |
+
|
129 |
+
# question generation
|
130 |
+
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
|
136 |
+
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json)
|
138 |
+
|
139 |
+
| | Score | Type | Dataset |
|
140 |
+
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
141 |
+
| BERTScore | 81.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
142 |
+
| Bleu_1 | 23.3 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
143 |
+
| Bleu_2 | 15.39 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
144 |
+
| Bleu_3 | 10.74 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
145 |
+
| Bleu_4 | 7.72 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
146 |
+
| METEOR | 18.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
147 |
+
| MoverScore | 57.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
148 |
+
| ROUGE_L | 22.81 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
149 |
+
|
150 |
+
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json)
|
152 |
+
|
153 |
+
| | Score | Type | Dataset |
|
154 |
+
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
155 |
+
| QAAlignedF1Score (BERTScore) | 81.98 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
156 |
+
| QAAlignedF1Score (MoverScore) | 56.35 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
157 |
+
| QAAlignedPrecision (BERTScore) | 81.19 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
158 |
+
| QAAlignedPrecision (MoverScore) | 56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
159 |
+
| QAAlignedRecall (BERTScore) | 82.83 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
160 |
+
| QAAlignedRecall (MoverScore) | 56.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
161 |
+
|
162 |
+
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 60.7 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
168 |
+
| AnswerF1Score | 74.04 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
169 |
+
| BERTScore | 91.12 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
170 |
+
| Bleu_1 | 40.14 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
171 |
+
| Bleu_2 | 34.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
172 |
+
| Bleu_3 | 30.56 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
173 |
+
| Bleu_4 | 26.87 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
174 |
+
| METEOR | 43.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
175 |
+
| MoverScore | 82.62 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
176 |
+
| ROUGE_L | 45.82 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
## Training hyperparameters
|
181 |
+
|
182 |
+
The following hyperparameters were used during fine-tuning:
|
183 |
+
- dataset_path: lmqg/qg_itquad
|
184 |
+
- dataset_name: default
|
185 |
+
- input_types: ['paragraph_answer', 'paragraph_sentence']
|
186 |
+
- output_types: ['question', 'answer']
|
187 |
+
- prefix_types: ['qg', 'ae']
|
188 |
+
- model: google/mt5-base
|
189 |
+
- max_length: 512
|
190 |
+
- max_length_output: 32
|
191 |
+
- epoch: 13
|
192 |
+
- batch: 32
|
193 |
+
- lr: 0.0005
|
194 |
+
- fp16: False
|
195 |
+
- random_seed: 1
|
196 |
+
- gradient_accumulation_steps: 2
|
197 |
+
- label_smoothing: 0.15
|
198 |
+
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-itquad-qg-ae/raw/main/trainer_config.json).
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
```
|
203 |
+
@inproceedings{ushio-etal-2022-generative,
|
204 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
205 |
+
author = "Ushio, Asahi and
|
206 |
+
Alva-Manchego, Fernando and
|
207 |
+
Camacho-Collados, Jose",
|
208 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
209 |
+
month = dec,
|
210 |
+
year = "2022",
|
211 |
+
address = "Abu Dhabi, U.A.E.",
|
212 |
+
publisher = "Association for Computational Linguistics",
|
213 |
+
}
|
214 |
+
|
215 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lmqg_output/mt5-base-itquad-
|
3 |
"add_prefix": true,
|
4 |
"architectures": [
|
5 |
"MT5ForConditionalGeneration"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lmqg_output/mt5-base-itquad-multitask/model_dpyopu/epoch_5",
|
3 |
"add_prefix": true,
|
4 |
"architectures": [
|
5 |
"MT5ForConditionalGeneration"
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"QAAlignedF1Score (BERTScore)": 0.8197821918119429, "QAAlignedRecall (BERTScore)": 0.8283015506704319, "QAAlignedPrecision (BERTScore)": 0.8119330094011925, "QAAlignedF1Score (MoverScore)": 0.5634931819025477, "QAAlignedRecall (MoverScore)": 0.5675011475834276, "QAAlignedPrecision (MoverScore)": 0.5599723189991794}, "validation": {"QAAlignedF1Score (BERTScore)": 0.8080914056798597, "QAAlignedRecall (BERTScore)": 0.835892198567779, "QAAlignedPrecision (BERTScore)": 0.782811450155633, "QAAlignedF1Score (MoverScore)": 0.5546692619043326, "QAAlignedRecall (MoverScore)": 0.5736236114784989, "QAAlignedPrecision (MoverScore)": 0.5379608477857356}}
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.2334974939122243, "Bleu_2": 0.156174010451155, "Bleu_3": 0.1099914311850735, "Bleu_4": 0.07979891216001947}, "test": {"Bleu_1": 0.22293325950849457, "Bleu_2": 0.1462268530043443, "Bleu_3": 0.10163482953182741, "Bleu_4": 0.07280043078401346}}
|
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.401537765716852, "Bleu_2": 0.34393774917572884, "Bleu_3": 0.3069682871144937, "Bleu_4": 0.2737440947081987, "METEOR": 0.4515736964433969, "ROUGE_L": 0.4445944184159832, "BERTScore": 0.9251149244550682, "MoverScore": 0.8532652688863316, "AnswerF1Score": 77.91003455014469, "AnswerExactMatch": 67.1441713760021}, "test": {"Bleu_1": 0.40144028805759546, "Bleu_2": 0.34560648207657074, "Bleu_3": 0.30562890523271946, "Bleu_4": 0.2687142292283542, "METEOR": 0.43510721492162563, "ROUGE_L": 0.45822440491960914, "BERTScore": 0.9112053436250032, "MoverScore": 0.8262344055230554, "AnswerF1Score": 74.04229123954505, "AnswerExactMatch": 60.70442896569851}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.2344813865063198, "Bleu_2": 0.15699408592735528, "Bleu_3": 0.1106607328860182, "Bleu_4": 0.08035563261097958, "METEOR": 0.19371865879446926, "ROUGE_L": 0.231225836880753, "BERTScore": 0.8181939477897686, "MoverScore": 0.5780999868134854}, "test": {"Bleu_1": 0.23296061199826076, "Bleu_2": 0.15391507744735322, "Bleu_3": 0.10742891259850533, "Bleu_4": 0.0771747478749581, "METEOR": 0.18559685067261858, "ROUGE_L": 0.22806009694437826, "BERTScore": 0.8115219126986919, "MoverScore": 0.5714625839387732}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d696980cc2a88f49a36154832240a73727dff18bf5d01d75b2d686b5a83bebd
|
3 |
+
size 2329632589
|
tokenizer_config.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"additional_special_tokens": null,
|
3 |
"eos_token": "</s>",
|
4 |
"extra_ids": 0,
|
5 |
-
"name_or_path": "lmqg_output/mt5-base-itquad-
|
6 |
"pad_token": "<pad>",
|
7 |
"sp_model_kwargs": {},
|
8 |
"special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
|
|
|
2 |
"additional_special_tokens": null,
|
3 |
"eos_token": "</s>",
|
4 |
"extra_ids": 0,
|
5 |
+
"name_or_path": "lmqg_output/mt5-base-itquad-multitask/model_dpyopu/epoch_5",
|
6 |
"pad_token": "<pad>",
|
7 |
"sp_model_kwargs": {},
|
8 |
"special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qg_itquad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "google/mt5-base", "max_length": 512, "max_length_output": 32, "epoch": 13, "batch": 32, "lr": 0.0005, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 2, "label_smoothing": 0.15}
|