Upload 23 files
Browse files- .gitattributes +21 -0
- results/training-metrics/F1_curve.png +3 -0
- results/training-metrics/PR_curve.png +3 -0
- results/training-metrics/P_curve.png +3 -0
- results/training-metrics/R_curve.png +3 -0
- results/training-metrics/args.yaml +106 -0
- results/training-metrics/confusion_matrix.png +3 -0
- results/training-metrics/confusion_matrix_normalized.png +3 -0
- results/training-metrics/labels.jpg +3 -0
- results/training-metrics/labels_correlogram.jpg +3 -0
- results/training-metrics/results.csv +201 -0
- results/training-metrics/results.png +3 -0
- results/training-metrics/train_batch0.jpg +3 -0
- results/training-metrics/train_batch1.jpg +3 -0
- results/training-metrics/train_batch2.jpg +3 -0
- results/training-metrics/train_batch270940.jpg +3 -0
- results/training-metrics/train_batch270941.jpg +3 -0
- results/training-metrics/train_batch270942.jpg +3 -0
- results/training-metrics/val_batch0_labels.jpg +3 -0
- results/training-metrics/val_batch0_pred.jpg +3 -0
- results/training-metrics/val_batch1_labels.jpg +3 -0
- results/training-metrics/val_batch1_pred.jpg +3 -0
- results/training-metrics/val_batch2_labels.jpg +3 -0
- results/training-metrics/val_batch2_pred.jpg +3 -0
.gitattributes
CHANGED
@@ -41,3 +41,24 @@ test/longue.png filter=lfs diff=lfs merge=lfs -text
|
|
41 |
test/rayure.png filter=lfs diff=lfs merge=lfs -text
|
42 |
test/sans-manche.png filter=lfs diff=lfs merge=lfs -text
|
43 |
test/trois-quart.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
test/rayure.png filter=lfs diff=lfs merge=lfs -text
|
42 |
test/sans-manche.png filter=lfs diff=lfs merge=lfs -text
|
43 |
test/trois-quart.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
results/training-metrics/confusion_matrix_normalized.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
results/training-metrics/confusion_matrix.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
results/training-metrics/F1_curve.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
results/training-metrics/labels_correlogram.jpg filter=lfs diff=lfs merge=lfs -text
|
48 |
+
results/training-metrics/labels.jpg filter=lfs diff=lfs merge=lfs -text
|
49 |
+
results/training-metrics/P_curve.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
results/training-metrics/PR_curve.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
results/training-metrics/R_curve.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
results/training-metrics/results.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
results/training-metrics/train_batch0.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
+
results/training-metrics/train_batch1.jpg filter=lfs diff=lfs merge=lfs -text
|
55 |
+
results/training-metrics/train_batch2.jpg filter=lfs diff=lfs merge=lfs -text
|
56 |
+
results/training-metrics/train_batch270940.jpg filter=lfs diff=lfs merge=lfs -text
|
57 |
+
results/training-metrics/train_batch270941.jpg filter=lfs diff=lfs merge=lfs -text
|
58 |
+
results/training-metrics/train_batch270942.jpg filter=lfs diff=lfs merge=lfs -text
|
59 |
+
results/training-metrics/val_batch0_labels.jpg filter=lfs diff=lfs merge=lfs -text
|
60 |
+
results/training-metrics/val_batch0_pred.jpg filter=lfs diff=lfs merge=lfs -text
|
61 |
+
results/training-metrics/val_batch1_labels.jpg filter=lfs diff=lfs merge=lfs -text
|
62 |
+
results/training-metrics/val_batch1_pred.jpg filter=lfs diff=lfs merge=lfs -text
|
63 |
+
results/training-metrics/val_batch2_labels.jpg filter=lfs diff=lfs merge=lfs -text
|
64 |
+
results/training-metrics/val_batch2_pred.jpg filter=lfs diff=lfs merge=lfs -text
|
results/training-metrics/F1_curve.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/PR_curve.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/P_curve.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/R_curve.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/args.yaml
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: detect
|
2 |
+
mode: train
|
3 |
+
model: dataset/yolov8n.pt
|
4 |
+
data: fashionpedia.yaml
|
5 |
+
epochs: 200
|
6 |
+
time: null
|
7 |
+
patience: 100
|
8 |
+
batch: 32
|
9 |
+
imgsz: 640
|
10 |
+
save: true
|
11 |
+
save_period: 1
|
12 |
+
cache: false
|
13 |
+
device: null
|
14 |
+
workers: 20
|
15 |
+
project: null
|
16 |
+
name: yolov8n-fashionpedia-1
|
17 |
+
exist_ok: true
|
18 |
+
pretrained: true
|
19 |
+
optimizer: auto
|
20 |
+
verbose: true
|
21 |
+
seed: 0
|
22 |
+
deterministic: true
|
23 |
+
single_cls: false
|
24 |
+
rect: false
|
25 |
+
cos_lr: false
|
26 |
+
close_mosaic: 10
|
27 |
+
resume: false
|
28 |
+
amp: true
|
29 |
+
fraction: 1.0
|
30 |
+
profile: false
|
31 |
+
freeze: null
|
32 |
+
multi_scale: false
|
33 |
+
overlap_mask: true
|
34 |
+
mask_ratio: 4
|
35 |
+
dropout: 0.0
|
36 |
+
val: true
|
37 |
+
split: val
|
38 |
+
save_json: false
|
39 |
+
save_hybrid: false
|
40 |
+
conf: null
|
41 |
+
iou: 0.7
|
42 |
+
max_det: 300
|
43 |
+
half: false
|
44 |
+
dnn: false
|
45 |
+
plots: true
|
46 |
+
source: null
|
47 |
+
vid_stride: 1
|
48 |
+
stream_buffer: false
|
49 |
+
visualize: false
|
50 |
+
augment: false
|
51 |
+
agnostic_nms: false
|
52 |
+
classes: null
|
53 |
+
retina_masks: false
|
54 |
+
embed: null
|
55 |
+
show: false
|
56 |
+
save_frames: false
|
57 |
+
save_txt: false
|
58 |
+
save_conf: false
|
59 |
+
save_crop: false
|
60 |
+
show_labels: true
|
61 |
+
show_conf: true
|
62 |
+
show_boxes: true
|
63 |
+
line_width: null
|
64 |
+
format: torchscript
|
65 |
+
keras: false
|
66 |
+
optimize: false
|
67 |
+
int8: false
|
68 |
+
dynamic: false
|
69 |
+
simplify: false
|
70 |
+
opset: null
|
71 |
+
workspace: 4
|
72 |
+
nms: false
|
73 |
+
lr0: 0.01
|
74 |
+
lrf: 0.01
|
75 |
+
momentum: 0.937
|
76 |
+
weight_decay: 0.0005
|
77 |
+
warmup_epochs: 3.0
|
78 |
+
warmup_momentum: 0.8
|
79 |
+
warmup_bias_lr: 0.1
|
80 |
+
box: 7.5
|
81 |
+
cls: 0.5
|
82 |
+
dfl: 1.5
|
83 |
+
pose: 12.0
|
84 |
+
kobj: 1.0
|
85 |
+
label_smoothing: 0.05
|
86 |
+
nbs: 64
|
87 |
+
hsv_h: 0.015
|
88 |
+
hsv_s: 0.7
|
89 |
+
hsv_v: 0.4
|
90 |
+
degrees: 0.0
|
91 |
+
translate: 0.1
|
92 |
+
scale: 0.5
|
93 |
+
shear: 0.0
|
94 |
+
perspective: 0.0
|
95 |
+
flipud: 0.0
|
96 |
+
fliplr: 0.5
|
97 |
+
bgr: 0.0
|
98 |
+
mosaic: 1.0
|
99 |
+
mixup: 0.0
|
100 |
+
copy_paste: 0.0
|
101 |
+
auto_augment: randaugment
|
102 |
+
erasing: 0.4
|
103 |
+
crop_fraction: 1.0
|
104 |
+
cfg: null
|
105 |
+
tracker: botsort.yaml
|
106 |
+
save_dir: /home/louis/vetement_ai/yolo/runs/detect/yolov8n-fashionpedia-1
|
results/training-metrics/confusion_matrix.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/confusion_matrix_normalized.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/labels.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/labels_correlogram.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/results.csv
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
+
1, 1.2983, 2.672, 1.3517, 0.55727, 0.23309, 0.21775, 0.14654, 1.1952, 1.6039, 1.3007, 0.003331, 0.003331, 0.003331
|
3 |
+
2, 1.1899, 1.6748, 1.2498, 0.52754, 0.27712, 0.27083, 0.18915, 1.0959, 1.395, 1.2215, 0.0066313, 0.0066313, 0.0066313
|
4 |
+
3, 1.2126, 1.5973, 1.2537, 0.53769, 0.27284, 0.27118, 0.18599, 1.1618, 1.4195, 1.2598, 0.0098987, 0.0098987, 0.0098987
|
5 |
+
4, 1.2156, 1.5063, 1.2582, 0.54707, 0.31746, 0.3129, 0.21961, 1.0715, 1.2663, 1.1995, 0.0098515, 0.0098515, 0.0098515
|
6 |
+
5, 1.1671, 1.3756, 1.2279, 0.53573, 0.35959, 0.35436, 0.25121, 1.013, 1.1347, 1.1607, 0.009802, 0.009802, 0.009802
|
7 |
+
6, 1.1332, 1.302, 1.2055, 0.52156, 0.37193, 0.37158, 0.2678, 0.98068, 1.0915, 1.1385, 0.0097525, 0.0097525, 0.0097525
|
8 |
+
7, 1.1135, 1.2572, 1.1921, 0.5933, 0.38485, 0.39523, 0.28705, 0.95669, 1.023, 1.1203, 0.009703, 0.009703, 0.009703
|
9 |
+
8, 1.0967, 1.2265, 1.1837, 0.57129, 0.396, 0.40725, 0.29837, 0.92977, 0.98673, 1.1033, 0.0096535, 0.0096535, 0.0096535
|
10 |
+
9, 1.0841, 1.2011, 1.1753, 0.59488, 0.40918, 0.42147, 0.31078, 0.91292, 0.95557, 1.0938, 0.009604, 0.009604, 0.009604
|
11 |
+
10, 1.0737, 1.1813, 1.1704, 0.56742, 0.41492, 0.43228, 0.32008, 0.90065, 0.9308, 1.0842, 0.0095545, 0.0095545, 0.0095545
|
12 |
+
11, 1.0662, 1.1657, 1.1643, 0.5759, 0.42386, 0.44273, 0.32947, 0.88785, 0.91207, 1.0771, 0.009505, 0.009505, 0.009505
|
13 |
+
12, 1.0548, 1.1471, 1.1584, 0.5807, 0.4341, 0.44938, 0.33636, 0.8793, 0.89672, 1.071, 0.0094555, 0.0094555, 0.0094555
|
14 |
+
13, 1.0551, 1.1421, 1.1586, 0.5935, 0.43487, 0.45644, 0.34217, 0.872, 0.88316, 1.0668, 0.009406, 0.009406, 0.009406
|
15 |
+
14, 1.0494, 1.1346, 1.154, 0.5976, 0.44303, 0.46367, 0.34911, 0.86448, 0.87028, 1.0615, 0.0093565, 0.0093565, 0.0093565
|
16 |
+
15, 1.045, 1.1242, 1.1511, 0.61188, 0.4409, 0.46944, 0.35402, 0.85934, 0.85882, 1.0584, 0.009307, 0.009307, 0.009307
|
17 |
+
16, 1.0368, 1.1089, 1.1456, 0.6047, 0.44619, 0.47239, 0.35715, 0.85351, 0.84908, 1.0541, 0.0092575, 0.0092575, 0.0092575
|
18 |
+
17, 1.0355, 1.1031, 1.1446, 0.60148, 0.45317, 0.47703, 0.3617, 0.84913, 0.84051, 1.0509, 0.009208, 0.009208, 0.009208
|
19 |
+
18, 1.0312, 1.0996, 1.1415, 0.61039, 0.4549, 0.48056, 0.36469, 0.84495, 0.83409, 1.0484, 0.0091585, 0.0091585, 0.0091585
|
20 |
+
19, 1.0302, 1.0957, 1.1414, 0.6114, 0.4576, 0.48421, 0.36802, 0.84215, 0.82841, 1.0464, 0.009109, 0.009109, 0.009109
|
21 |
+
20, 1.0263, 1.0842, 1.1378, 0.61885, 0.46003, 0.48675, 0.37033, 0.83944, 0.82364, 1.0447, 0.0090595, 0.0090595, 0.0090595
|
22 |
+
21, 1.0247, 1.0855, 1.1374, 0.61764, 0.46075, 0.48885, 0.37237, 0.83709, 0.81937, 1.0433, 0.00901, 0.00901, 0.00901
|
23 |
+
22, 1.0222, 1.0779, 1.1363, 0.61532, 0.46253, 0.49109, 0.3742, 0.83501, 0.81572, 1.0418, 0.0089605, 0.0089605, 0.0089605
|
24 |
+
23, 1.0198, 1.0755, 1.1343, 0.61346, 0.46455, 0.4927, 0.3758, 0.83326, 0.81239, 1.0407, 0.008911, 0.008911, 0.008911
|
25 |
+
24, 1.0181, 1.0716, 1.1331, 0.61298, 0.46739, 0.49449, 0.37717, 0.83155, 0.80943, 1.0395, 0.0088615, 0.0088615, 0.0088615
|
26 |
+
25, 1.0161, 1.065, 1.1321, 0.61119, 0.46956, 0.49553, 0.37814, 0.83013, 0.80692, 1.0385, 0.008812, 0.008812, 0.008812
|
27 |
+
26, 1.0139, 1.0656, 1.1315, 0.61979, 0.46783, 0.49681, 0.37936, 0.82877, 0.80449, 1.0376, 0.0087625, 0.0087625, 0.0087625
|
28 |
+
27, 1.0125, 1.0623, 1.1306, 0.61674, 0.4705, 0.49784, 0.38039, 0.8277, 0.80227, 1.0369, 0.008713, 0.008713, 0.008713
|
29 |
+
28, 1.0104, 1.057, 1.1293, 0.61677, 0.47108, 0.49889, 0.38127, 0.8267, 0.80031, 1.0363, 0.0086635, 0.0086635, 0.0086635
|
30 |
+
29, 1.011, 1.0538, 1.1286, 0.61253, 0.47396, 0.49987, 0.38224, 0.82587, 0.79872, 1.0357, 0.008614, 0.008614, 0.008614
|
31 |
+
30, 1.0067, 1.0532, 1.1251, 0.61309, 0.47411, 0.50095, 0.3831, 0.82496, 0.79706, 1.0351, 0.0085645, 0.0085645, 0.0085645
|
32 |
+
31, 1.0067, 1.0465, 1.126, 0.61746, 0.47306, 0.50201, 0.38424, 0.82409, 0.79528, 1.0345, 0.008515, 0.008515, 0.008515
|
33 |
+
32, 1.0066, 1.0443, 1.1257, 0.61654, 0.47525, 0.503, 0.38519, 0.82335, 0.79357, 1.0339, 0.0084655, 0.0084655, 0.0084655
|
34 |
+
33, 1.0049, 1.0432, 1.1256, 0.61293, 0.47851, 0.50398, 0.38597, 0.82257, 0.79181, 1.0334, 0.008416, 0.008416, 0.008416
|
35 |
+
34, 1.0027, 1.0435, 1.1247, 0.61301, 0.4785, 0.50496, 0.3868, 0.82174, 0.79008, 1.0328, 0.0083665, 0.0083665, 0.0083665
|
36 |
+
35, 1.003, 1.0402, 1.1238, 0.61444, 0.47891, 0.50602, 0.38779, 0.82101, 0.78845, 1.0322, 0.008317, 0.008317, 0.008317
|
37 |
+
36, 0.99981, 1.0373, 1.1211, 0.61597, 0.47984, 0.50691, 0.38858, 0.82022, 0.78692, 1.0316, 0.0082675, 0.0082675, 0.0082675
|
38 |
+
37, 1.0003, 1.0327, 1.1222, 0.61661, 0.48217, 0.50803, 0.3895, 0.81938, 0.78508, 1.0309, 0.008218, 0.008218, 0.008218
|
39 |
+
38, 0.99982, 1.0344, 1.1211, 0.61899, 0.48302, 0.50898, 0.39045, 0.81859, 0.78338, 1.0303, 0.0081685, 0.0081685, 0.0081685
|
40 |
+
39, 0.99877, 1.033, 1.12, 0.61949, 0.48235, 0.50993, 0.39131, 0.81791, 0.78175, 1.0297, 0.008119, 0.008119, 0.008119
|
41 |
+
40, 0.99857, 1.0284, 1.1195, 0.62004, 0.48269, 0.51088, 0.39222, 0.81712, 0.78006, 1.0291, 0.0080695, 0.0080695, 0.0080695
|
42 |
+
41, 0.99569, 1.027, 1.1196, 0.61987, 0.48471, 0.51187, 0.39308, 0.81644, 0.77836, 1.0286, 0.00802, 0.00802, 0.00802
|
43 |
+
42, 0.99679, 1.0245, 1.1188, 0.6171, 0.48634, 0.51269, 0.39384, 0.81574, 0.7768, 1.028, 0.0079705, 0.0079705, 0.0079705
|
44 |
+
43, 0.99462, 1.0214, 1.1173, 0.6179, 0.48598, 0.51357, 0.3948, 0.81498, 0.77519, 1.0274, 0.007921, 0.007921, 0.007921
|
45 |
+
44, 0.99244, 1.0217, 1.116, 0.61808, 0.48742, 0.51452, 0.39565, 0.81428, 0.77362, 1.0268, 0.0078715, 0.0078715, 0.0078715
|
46 |
+
45, 0.99332, 1.0194, 1.1168, 0.62491, 0.48548, 0.51575, 0.39667, 0.81356, 0.77207, 1.0262, 0.007822, 0.007822, 0.007822
|
47 |
+
46, 0.9907, 1.0163, 1.1151, 0.62479, 0.48756, 0.51675, 0.39768, 0.81295, 0.77067, 1.0257, 0.0077725, 0.0077725, 0.0077725
|
48 |
+
47, 0.99269, 1.0176, 1.1162, 0.62664, 0.48836, 0.51782, 0.3987, 0.81242, 0.76919, 1.0252, 0.007723, 0.007723, 0.007723
|
49 |
+
48, 0.98854, 1.0143, 1.1146, 0.6259, 0.48979, 0.51886, 0.3995, 0.81186, 0.76761, 1.0247, 0.0076735, 0.0076735, 0.0076735
|
50 |
+
49, 0.9892, 1.0121, 1.1153, 0.62631, 0.48999, 0.51991, 0.40047, 0.81116, 0.76608, 1.0241, 0.007624, 0.007624, 0.007624
|
51 |
+
50, 0.99053, 1.0122, 1.115, 0.62479, 0.49174, 0.52095, 0.40107, 0.81061, 0.76472, 1.0236, 0.0075745, 0.0075745, 0.0075745
|
52 |
+
51, 0.98926, 1.0096, 1.1139, 0.62635, 0.49246, 0.522, 0.40207, 0.81001, 0.76324, 1.0231, 0.007525, 0.007525, 0.007525
|
53 |
+
52, 0.98803, 1.0084, 1.1139, 0.62854, 0.49299, 0.52317, 0.40315, 0.80937, 0.76167, 1.0226, 0.0074755, 0.0074755, 0.0074755
|
54 |
+
53, 0.98682, 1.0069, 1.1129, 0.62988, 0.49312, 0.52402, 0.40405, 0.80864, 0.76016, 1.0221, 0.007426, 0.007426, 0.007426
|
55 |
+
54, 0.98541, 1.0061, 1.1124, 0.63115, 0.49405, 0.52513, 0.40493, 0.808, 0.75866, 1.0216, 0.0073765, 0.0073765, 0.0073765
|
56 |
+
55, 0.98494, 1.0035, 1.1133, 0.63389, 0.49469, 0.52627, 0.40587, 0.80744, 0.75727, 1.0213, 0.007327, 0.007327, 0.007327
|
57 |
+
56, 0.9864, 1.0066, 1.1132, 0.63403, 0.4959, 0.52729, 0.4067, 0.80684, 0.75576, 1.0208, 0.0072775, 0.0072775, 0.0072775
|
58 |
+
57, 0.98364, 1.0014, 1.1112, 0.63255, 0.49798, 0.52848, 0.40767, 0.80623, 0.75435, 1.0204, 0.007228, 0.007228, 0.007228
|
59 |
+
58, 0.9836, 1.0018, 1.111, 0.63504, 0.49854, 0.52941, 0.40857, 0.80567, 0.75302, 1.0199, 0.0071785, 0.0071785, 0.0071785
|
60 |
+
59, 0.9821, 0.9979, 1.1095, 0.63188, 0.50038, 0.53064, 0.40962, 0.80508, 0.7516, 1.0194, 0.007129, 0.007129, 0.007129
|
61 |
+
60, 0.98355, 0.99713, 1.1099, 0.63649, 0.49991, 0.53189, 0.41059, 0.80447, 0.75021, 1.019, 0.0070795, 0.0070795, 0.0070795
|
62 |
+
61, 0.97908, 0.99457, 1.1079, 0.63884, 0.50061, 0.53292, 0.41142, 0.80388, 0.74884, 1.0185, 0.00703, 0.00703, 0.00703
|
63 |
+
62, 0.9823, 0.99557, 1.1089, 0.63892, 0.50196, 0.53382, 0.4121, 0.80328, 0.74754, 1.0181, 0.0069805, 0.0069805, 0.0069805
|
64 |
+
63, 0.98049, 0.99478, 1.1088, 0.63945, 0.50269, 0.53465, 0.41277, 0.8027, 0.74605, 1.0176, 0.006931, 0.006931, 0.006931
|
65 |
+
64, 0.97848, 0.98931, 1.108, 0.64067, 0.50364, 0.53542, 0.41345, 0.80211, 0.74471, 1.0171, 0.0068815, 0.0068815, 0.0068815
|
66 |
+
65, 0.97815, 0.99131, 1.1075, 0.63616, 0.50597, 0.53612, 0.4141, 0.80149, 0.74344, 1.0167, 0.006832, 0.006832, 0.006832
|
67 |
+
66, 0.97909, 0.99155, 1.1074, 0.63917, 0.50674, 0.53699, 0.41479, 0.80099, 0.74211, 1.0162, 0.0067825, 0.0067825, 0.0067825
|
68 |
+
67, 0.97771, 0.9908, 1.1077, 0.6406, 0.50712, 0.53784, 0.41565, 0.80055, 0.74084, 1.0158, 0.006733, 0.006733, 0.006733
|
69 |
+
68, 0.97555, 0.9856, 1.1069, 0.64322, 0.50712, 0.53877, 0.41634, 0.80002, 0.73955, 1.0154, 0.0066835, 0.0066835, 0.0066835
|
70 |
+
69, 0.97671, 0.98424, 1.106, 0.64409, 0.50686, 0.53937, 0.4172, 0.79948, 0.73828, 1.015, 0.006634, 0.006634, 0.006634
|
71 |
+
70, 0.97525, 0.98233, 1.1051, 0.64363, 0.50736, 0.54006, 0.41787, 0.79886, 0.73701, 1.0146, 0.0065845, 0.0065845, 0.0065845
|
72 |
+
71, 0.97417, 0.9837, 1.1063, 0.64525, 0.5082, 0.54083, 0.41838, 0.79841, 0.73582, 1.0142, 0.006535, 0.006535, 0.006535
|
73 |
+
72, 0.97417, 0.98323, 1.1066, 0.64632, 0.50956, 0.54173, 0.41908, 0.79798, 0.73465, 1.0139, 0.0064855, 0.0064855, 0.0064855
|
74 |
+
73, 0.97375, 0.98248, 1.1049, 0.64883, 0.50876, 0.5425, 0.41974, 0.7974, 0.73338, 1.0135, 0.006436, 0.006436, 0.006436
|
75 |
+
74, 0.97316, 0.97818, 1.1039, 0.6495, 0.51001, 0.54347, 0.42061, 0.79671, 0.73208, 1.013, 0.0063865, 0.0063865, 0.0063865
|
76 |
+
75, 0.97222, 0.97722, 1.1029, 0.65176, 0.50982, 0.54437, 0.42126, 0.79618, 0.73095, 1.0126, 0.006337, 0.006337, 0.006337
|
77 |
+
76, 0.97231, 0.97581, 1.1039, 0.6527, 0.51118, 0.54528, 0.42189, 0.79568, 0.72977, 1.0122, 0.0062875, 0.0062875, 0.0062875
|
78 |
+
77, 0.97029, 0.97536, 1.1025, 0.65438, 0.51092, 0.54613, 0.42269, 0.79509, 0.72864, 1.0118, 0.006238, 0.006238, 0.006238
|
79 |
+
78, 0.97095, 0.977, 1.1026, 0.65721, 0.51027, 0.54703, 0.42345, 0.79453, 0.72745, 1.0114, 0.0061885, 0.0061885, 0.0061885
|
80 |
+
79, 0.97033, 0.97416, 1.1035, 0.65701, 0.51098, 0.54788, 0.42434, 0.79406, 0.72637, 1.011, 0.006139, 0.006139, 0.006139
|
81 |
+
80, 0.96859, 0.97205, 1.1017, 0.65694, 0.51161, 0.54857, 0.4249, 0.79363, 0.72536, 1.0106, 0.0060895, 0.0060895, 0.0060895
|
82 |
+
81, 0.966, 0.97114, 1.1009, 0.65832, 0.51264, 0.54934, 0.42564, 0.79317, 0.7244, 1.0102, 0.00604, 0.00604, 0.00604
|
83 |
+
82, 0.96982, 0.97256, 1.1023, 0.65871, 0.51389, 0.55005, 0.42618, 0.79279, 0.72341, 1.0099, 0.0059905, 0.0059905, 0.0059905
|
84 |
+
83, 0.96924, 0.96918, 1.1018, 0.6574, 0.51686, 0.55083, 0.42695, 0.79238, 0.72241, 1.0096, 0.005941, 0.005941, 0.005941
|
85 |
+
84, 0.96975, 0.97138, 1.1016, 0.65878, 0.51641, 0.5516, 0.42766, 0.79195, 0.72144, 1.0092, 0.0058915, 0.0058915, 0.0058915
|
86 |
+
85, 0.96572, 0.96698, 1.0998, 0.65839, 0.51712, 0.55241, 0.42821, 0.79154, 0.72044, 1.0089, 0.005842, 0.005842, 0.005842
|
87 |
+
86, 0.9651, 0.96396, 1.0997, 0.65903, 0.51795, 0.5531, 0.42885, 0.79114, 0.71943, 1.0085, 0.0057925, 0.0057925, 0.0057925
|
88 |
+
87, 0.96573, 0.96383, 1.0995, 0.65982, 0.51749, 0.55396, 0.42964, 0.79065, 0.71834, 1.0081, 0.005743, 0.005743, 0.005743
|
89 |
+
88, 0.96192, 0.96293, 1.0974, 0.66098, 0.51794, 0.55462, 0.43021, 0.79016, 0.7173, 1.0078, 0.0056935, 0.0056935, 0.0056935
|
90 |
+
89, 0.964, 0.96375, 1.0992, 0.66487, 0.5166, 0.55544, 0.43084, 0.78968, 0.7163, 1.0074, 0.005644, 0.005644, 0.005644
|
91 |
+
90, 0.96229, 0.96053, 1.099, 0.66401, 0.51784, 0.55639, 0.43164, 0.78918, 0.71522, 1.0071, 0.0055945, 0.0055945, 0.0055945
|
92 |
+
91, 0.96309, 0.9603, 1.0985, 0.66317, 0.51809, 0.55683, 0.43216, 0.78869, 0.71431, 1.0068, 0.005545, 0.005545, 0.005545
|
93 |
+
92, 0.96243, 0.96048, 1.0978, 0.66568, 0.51831, 0.55742, 0.43279, 0.7882, 0.7134, 1.0064, 0.0054955, 0.0054955, 0.0054955
|
94 |
+
93, 0.96026, 0.95467, 1.0969, 0.66661, 0.51893, 0.55826, 0.43342, 0.78781, 0.71254, 1.0061, 0.005446, 0.005446, 0.005446
|
95 |
+
94, 0.95868, 0.95336, 1.0955, 0.67241, 0.51992, 0.55894, 0.43389, 0.78735, 0.71162, 1.0058, 0.0053965, 0.0053965, 0.0053965
|
96 |
+
95, 0.95814, 0.95617, 1.0962, 0.67253, 0.52002, 0.55976, 0.43472, 0.78693, 0.71066, 1.0055, 0.005347, 0.005347, 0.005347
|
97 |
+
96, 0.96039, 0.95561, 1.096, 0.66794, 0.52264, 0.5605, 0.43528, 0.78639, 0.7097, 1.0051, 0.0052975, 0.0052975, 0.0052975
|
98 |
+
97, 0.95775, 0.95006, 1.0953, 0.66612, 0.52328, 0.56145, 0.43618, 0.78588, 0.70863, 1.0048, 0.005248, 0.005248, 0.005248
|
99 |
+
98, 0.95734, 0.9511, 1.0947, 0.67036, 0.52168, 0.56198, 0.43673, 0.78542, 0.70778, 1.0045, 0.0051985, 0.0051985, 0.0051985
|
100 |
+
99, 0.95694, 0.9512, 1.0947, 0.67472, 0.52141, 0.56276, 0.43744, 0.78497, 0.70692, 1.0041, 0.005149, 0.005149, 0.005149
|
101 |
+
100, inf, 0.94632, 1.095, 0.67516, 0.52249, 0.56342, 0.43802, 0.78465, 0.7061, 1.0039, 0.0050995, 0.0050995, 0.0050995
|
102 |
+
101, 0.95481, 0.94796, 1.0941, 0.67716, 0.52307, 0.56435, 0.43877, 0.78434, 0.70515, 1.0036, 0.00505, 0.00505, 0.00505
|
103 |
+
102, 0.95229, 0.94491, 1.0921, 0.6723, 0.52535, 0.56502, 0.43956, 0.78386, 0.70428, 1.0032, 0.0050005, 0.0050005, 0.0050005
|
104 |
+
103, 0.95433, 0.94426, 1.093, 0.67702, 0.52327, 0.56564, 0.44012, 0.7834, 0.70334, 1.0029, 0.004951, 0.004951, 0.004951
|
105 |
+
104, 0.95477, 0.94739, 1.093, 0.6782, 0.52314, 0.56635, 0.44071, 0.78299, 0.70252, 1.0026, 0.0049015, 0.0049015, 0.0049015
|
106 |
+
105, 0.95316, 0.94455, 1.093, 0.67895, 0.52464, 0.56724, 0.44157, 0.78263, 0.70164, 1.0023, 0.004852, 0.004852, 0.004852
|
107 |
+
106, 0.95302, 0.94467, 1.0931, 0.67249, 0.5288, 0.56788, 0.4421, 0.7822, 0.7007, 1.0019, 0.0048025, 0.0048025, 0.0048025
|
108 |
+
107, 0.95292, 0.94118, 1.0937, 0.67397, 0.52889, 0.56861, 0.44283, 0.78171, 0.69974, 1.0016, 0.004753, 0.004753, 0.004753
|
109 |
+
108, 0.94915, 0.93707, 1.0906, 0.67606, 0.52968, 0.56942, 0.44357, 0.78138, 0.69871, 1.0014, 0.0047035, 0.0047035, 0.0047035
|
110 |
+
109, 0.95012, 0.94029, 1.0924, 0.67486, 0.53124, 0.5701, 0.444, 0.78096, 0.69783, 1.0011, 0.004654, 0.004654, 0.004654
|
111 |
+
110, 0.94732, 0.93509, 1.0893, 0.67668, 0.53146, 0.57078, 0.44454, 0.78048, 0.69687, 1.0007, 0.0046045, 0.0046045, 0.0046045
|
112 |
+
111, 0.94941, 0.93652, 1.0915, 0.67678, 0.53211, 0.57138, 0.44522, 0.78008, 0.69597, 1.0004, 0.004555, 0.004555, 0.004555
|
113 |
+
112, 0.94833, 0.935, 1.0896, 0.67735, 0.53149, 0.57189, 0.44576, 0.77975, 0.6951, 1.0001, 0.0045055, 0.0045055, 0.0045055
|
114 |
+
113, 0.94794, 0.93518, 1.0895, 0.67887, 0.53172, 0.57247, 0.44639, 0.77934, 0.69429, 0.99982, 0.004456, 0.004456, 0.004456
|
115 |
+
114, 0.94591, 0.93339, 1.0884, 0.67734, 0.53304, 0.5731, 0.44698, 0.77891, 0.69327, 0.9995, 0.0044065, 0.0044065, 0.0044065
|
116 |
+
115, 0.94525, 0.92897, 1.0874, 0.67954, 0.53476, 0.57387, 0.44762, 0.77854, 0.69234, 0.99917, 0.004357, 0.004357, 0.004357
|
117 |
+
116, 0.94652, 0.9319, 1.0887, 0.68084, 0.53563, 0.57448, 0.44818, 0.77813, 0.69155, 0.99892, 0.0043075, 0.0043075, 0.0043075
|
118 |
+
117, 0.94356, 0.92637, 1.0873, 0.67878, 0.53675, 0.57524, 0.44876, 0.77786, 0.69079, 0.99866, 0.004258, 0.004258, 0.004258
|
119 |
+
118, 0.94394, 0.92479, 1.0872, 0.67851, 0.53768, 0.57575, 0.44929, 0.77755, 0.68997, 0.99836, 0.0042085, 0.0042085, 0.0042085
|
120 |
+
119, 0.94269, 0.92452, 1.0866, 0.67607, 0.5394, 0.57636, 0.44984, 0.7772, 0.68907, 0.99813, 0.004159, 0.004159, 0.004159
|
121 |
+
120, 0.94032, 0.92428, 1.0854, 0.67695, 0.53981, 0.57681, 0.45035, 0.77686, 0.6882, 0.99787, 0.0041095, 0.0041095, 0.0041095
|
122 |
+
121, 0.94091, 0.92287, 1.086, 0.67726, 0.54076, 0.57746, 0.45084, 0.77644, 0.68746, 0.99762, 0.00406, 0.00406, 0.00406
|
123 |
+
122, 0.94314, 0.92284, 1.0873, 0.67864, 0.54023, 0.57796, 0.45141, 0.77608, 0.68672, 0.99737, 0.0040105, 0.0040105, 0.0040105
|
124 |
+
123, 0.93915, 0.91928, 1.0857, 0.68046, 0.54009, 0.57873, 0.45205, 0.77563, 0.68581, 0.99707, 0.003961, 0.003961, 0.003961
|
125 |
+
124, 0.93953, 0.9181, 1.084, 0.68129, 0.54061, 0.57951, 0.45259, 0.77526, 0.68508, 0.99682, 0.0039115, 0.0039115, 0.0039115
|
126 |
+
125, 0.9396, 0.92184, 1.0851, 0.65989, 0.54126, 0.5801, 0.45322, 0.77487, 0.68426, 0.99652, 0.003862, 0.003862, 0.003862
|
127 |
+
126, 0.93752, 0.91673, 1.0838, 0.66015, 0.54252, 0.58084, 0.45378, 0.77451, 0.68332, 0.99628, 0.0038125, 0.0038125, 0.0038125
|
128 |
+
127, 0.9369, 0.91706, 1.0841, 0.65884, 0.54218, 0.58158, 0.45447, 0.77407, 0.68252, 0.99602, 0.003763, 0.003763, 0.003763
|
129 |
+
128, 0.9366, 0.91613, 1.0835, 0.68316, 0.54226, 0.58218, 0.45497, 0.77372, 0.68172, 0.99575, 0.0037135, 0.0037135, 0.0037135
|
130 |
+
129, 0.93428, 0.91285, 1.0833, 0.68474, 0.54271, 0.58274, 0.45558, 0.77327, 0.68095, 0.99547, 0.003664, 0.003664, 0.003664
|
131 |
+
130, 0.93285, 0.9098, 1.0818, 0.68971, 0.54265, 0.58337, 0.45611, 0.77287, 0.68007, 0.99516, 0.0036145, 0.0036145, 0.0036145
|
132 |
+
131, 0.931, 0.90815, 1.0809, 0.69376, 0.54203, 0.5839, 0.45668, 0.77228, 0.67932, 0.99485, 0.003565, 0.003565, 0.003565
|
133 |
+
132, 0.93276, 0.90946, 1.0816, 0.67142, 0.54339, 0.58462, 0.45744, 0.77183, 0.67847, 0.99454, 0.0035155, 0.0035155, 0.0035155
|
134 |
+
133, 0.93209, 0.90911, 1.0803, 0.6729, 0.54425, 0.5852, 0.45814, 0.77149, 0.67759, 0.99425, 0.003466, 0.003466, 0.003466
|
135 |
+
134, 0.93078, 0.90726, 1.0803, 0.67433, 0.54319, 0.58588, 0.45871, 0.77097, 0.6767, 0.99392, 0.0034165, 0.0034165, 0.0034165
|
136 |
+
135, 0.93125, 0.90314, 1.08, 0.67611, 0.5437, 0.58647, 0.45921, 0.77055, 0.67585, 0.99363, 0.003367, 0.003367, 0.003367
|
137 |
+
136, 0.92917, 0.90273, 1.0799, 0.67838, 0.54396, 0.58698, 0.45965, 0.77008, 0.67496, 0.9933, 0.0033175, 0.0033175, 0.0033175
|
138 |
+
137, 0.92697, 0.9009, 1.0776, 0.68055, 0.54319, 0.58759, 0.46012, 0.76972, 0.67411, 0.99301, 0.003268, 0.003268, 0.003268
|
139 |
+
138, 0.9275, 0.89946, 1.0783, 0.68109, 0.54338, 0.58826, 0.46066, 0.76936, 0.67323, 0.99275, 0.0032185, 0.0032185, 0.0032185
|
140 |
+
139, 0.92861, 0.89938, 1.0783, 0.68222, 0.54371, 0.58887, 0.4613, 0.76889, 0.67247, 0.99241, 0.003169, 0.003169, 0.003169
|
141 |
+
140, 0.92519, 0.89492, 1.0772, 0.68412, 0.54435, 0.58957, 0.46186, 0.76838, 0.67162, 0.99205, 0.0031195, 0.0031195, 0.0031195
|
142 |
+
141, 0.92652, 0.89917, 1.0788, 0.68069, 0.54699, 0.59027, 0.46252, 0.76792, 0.67074, 0.99173, 0.00307, 0.00307, 0.00307
|
143 |
+
142, 0.92335, 0.89247, 1.0761, 0.68349, 0.54588, 0.59108, 0.46312, 0.76748, 0.6699, 0.99136, 0.0030205, 0.0030205, 0.0030205
|
144 |
+
143, 0.92241, 0.89387, 1.0762, 0.68416, 0.54699, 0.5915, 0.46366, 0.76703, 0.6691, 0.99107, 0.002971, 0.002971, 0.002971
|
145 |
+
144, 0.92208, 0.89008, 1.0746, 0.68234, 0.54907, 0.5922, 0.46437, 0.76658, 0.66823, 0.99079, 0.0029215, 0.0029215, 0.0029215
|
146 |
+
145, 0.9206, 0.88936, 1.0759, 0.68573, 0.54952, 0.59298, 0.46486, 0.76617, 0.66729, 0.99048, 0.002872, 0.002872, 0.002872
|
147 |
+
146, 0.92022, 0.88762, 1.0751, 0.68593, 0.5513, 0.59364, 0.46554, 0.76582, 0.66651, 0.9902, 0.0028225, 0.0028225, 0.0028225
|
148 |
+
147, 0.91891, 0.88562, 1.0741, 0.68723, 0.55101, 0.59438, 0.46633, 0.76547, 0.66563, 0.98988, 0.002773, 0.002773, 0.002773
|
149 |
+
148, 0.91762, 0.88311, 1.0728, 0.68729, 0.5516, 0.59499, 0.46699, 0.76516, 0.66469, 0.98967, 0.0027235, 0.0027235, 0.0027235
|
150 |
+
149, 0.91616, 0.88318, 1.0727, 0.69171, 0.5506, 0.59555, 0.46741, 0.76472, 0.66386, 0.98934, 0.002674, 0.002674, 0.002674
|
151 |
+
150, 0.91829, 0.88523, 1.0741, 0.6932, 0.55043, 0.59614, 0.46807, 0.76429, 0.66304, 0.98903, 0.0026245, 0.0026245, 0.0026245
|
152 |
+
151, 0.91881, 0.88184, 1.073, 0.69347, 0.55087, 0.59679, 0.46861, 0.76384, 0.66223, 0.98868, 0.002575, 0.002575, 0.002575
|
153 |
+
152, 0.91562, 0.88111, 1.0724, 0.69476, 0.55116, 0.59727, 0.46935, 0.76341, 0.6614, 0.9884, 0.0025255, 0.0025255, 0.0025255
|
154 |
+
153, 0.91505, 0.8813, 1.0729, 0.6917, 0.55287, 0.59805, 0.46995, 0.76303, 0.66062, 0.98815, 0.002476, 0.002476, 0.002476
|
155 |
+
154, 0.91453, 0.87631, 1.0711, 0.69159, 0.55321, 0.59871, 0.47052, 0.76254, 0.65977, 0.98781, 0.0024265, 0.0024265, 0.0024265
|
156 |
+
155, 0.91202, 0.87569, 1.0701, 0.69163, 0.55407, 0.59944, 0.47113, 0.76214, 0.65893, 0.98748, 0.002377, 0.002377, 0.002377
|
157 |
+
156, 0.91186, 0.87292, 1.0702, 0.69285, 0.55411, 0.59992, 0.47162, 0.76178, 0.65808, 0.98722, 0.0023275, 0.0023275, 0.0023275
|
158 |
+
157, 0.90882, 0.87129, 1.0691, 0.69353, 0.55402, 0.60064, 0.47231, 0.76127, 0.65727, 0.98686, 0.002278, 0.002278, 0.002278
|
159 |
+
158, 0.90955, 0.87059, 1.0693, 0.69065, 0.55445, 0.60134, 0.47286, 0.76083, 0.65642, 0.98657, 0.0022285, 0.0022285, 0.0022285
|
160 |
+
159, 0.907, 0.86518, 1.0678, 0.6933, 0.55452, 0.60183, 0.47339, 0.7604, 0.65564, 0.98624, 0.002179, 0.002179, 0.002179
|
161 |
+
160, 0.90622, 0.86495, 1.0671, 0.69433, 0.55466, 0.60246, 0.47402, 0.75991, 0.65485, 0.98592, 0.0021295, 0.0021295, 0.0021295
|
162 |
+
161, 0.90387, 0.86213, 1.0668, 0.69869, 0.55318, 0.60303, 0.47447, 0.75957, 0.65409, 0.98567, 0.00208, 0.00208, 0.00208
|
163 |
+
162, 0.90467, 0.86214, 1.0668, 0.69221, 0.55625, 0.60369, 0.47514, 0.75914, 0.65331, 0.98536, 0.0020305, 0.0020305, 0.0020305
|
164 |
+
163, 0.90327, 0.85676, 1.0655, 0.69566, 0.55621, 0.60431, 0.47565, 0.75876, 0.65239, 0.98506, 0.001981, 0.001981, 0.001981
|
165 |
+
164, 0.90161, 0.8569, 1.0658, 0.69212, 0.55859, 0.60492, 0.47644, 0.75835, 0.65154, 0.98473, 0.0019315, 0.0019315, 0.0019315
|
166 |
+
165, 0.90011, 0.85426, 1.0645, 0.69425, 0.55894, 0.60566, 0.47699, 0.75783, 0.65063, 0.98432, 0.001882, 0.001882, 0.001882
|
167 |
+
166, 0.90129, 0.85581, 1.0644, 0.69161, 0.56204, 0.60639, 0.47773, 0.75747, 0.64979, 0.98402, 0.0018325, 0.0018325, 0.0018325
|
168 |
+
167, 0.898, 0.85159, 1.0627, 0.69452, 0.562, 0.60711, 0.47825, 0.75708, 0.64887, 0.98368, 0.001783, 0.001783, 0.001783
|
169 |
+
168, 0.8985, 0.85023, 1.0633, 0.69577, 0.56164, 0.60776, 0.47884, 0.75671, 0.64807, 0.98338, 0.0017335, 0.0017335, 0.0017335
|
170 |
+
169, 0.89537, 0.84761, 1.0612, 0.69887, 0.56089, 0.60837, 0.47939, 0.7563, 0.6472, 0.98309, 0.001684, 0.001684, 0.001684
|
171 |
+
170, 0.89592, 0.8466, 1.0618, 0.69622, 0.56259, 0.60907, 0.48013, 0.75591, 0.64634, 0.98282, 0.0016345, 0.0016345, 0.0016345
|
172 |
+
171, 0.89447, 0.84545, 1.0626, 0.69825, 0.56238, 0.60974, 0.48064, 0.75547, 0.64551, 0.98248, 0.001585, 0.001585, 0.001585
|
173 |
+
172, 0.89429, 0.84279, 1.0626, 0.69718, 0.56336, 0.61044, 0.4812, 0.75491, 0.64455, 0.98217, 0.0015355, 0.0015355, 0.0015355
|
174 |
+
173, 0.89173, 0.83866, 1.0604, 0.69825, 0.56508, 0.61107, 0.48191, 0.75438, 0.64372, 0.98183, 0.001486, 0.001486, 0.001486
|
175 |
+
174, 0.89129, 0.83862, 1.0594, 0.69801, 0.56545, 0.61183, 0.48259, 0.75391, 0.64289, 0.98148, 0.0014365, 0.0014365, 0.0014365
|
176 |
+
175, 0.88955, 0.8362, 1.0597, 0.72179, 0.5651, 0.61251, 0.48332, 0.75349, 0.64191, 0.98117, 0.001387, 0.001387, 0.001387
|
177 |
+
176, 0.88865, 0.83544, 1.059, 0.71974, 0.56635, 0.61327, 0.48402, 0.75303, 0.64115, 0.98086, 0.0013375, 0.0013375, 0.0013375
|
178 |
+
177, 0.8879, 0.83341, 1.0575, 0.72023, 0.56798, 0.61394, 0.48453, 0.75258, 0.64027, 0.98054, 0.001288, 0.001288, 0.001288
|
179 |
+
178, 0.88583, 0.82882, 1.0562, 0.72016, 0.56806, 0.61465, 0.48522, 0.75214, 0.63936, 0.98022, 0.0012385, 0.0012385, 0.0012385
|
180 |
+
179, 0.8842, 0.82746, 1.0558, 0.71978, 0.56822, 0.61533, 0.4859, 0.75163, 0.6385, 0.97984, 0.001189, 0.001189, 0.001189
|
181 |
+
180, 0.88382, 0.82646, 1.0559, 0.72188, 0.56804, 0.61608, 0.48641, 0.7512, 0.63757, 0.97948, 0.0011395, 0.0011395, 0.0011395
|
182 |
+
181, 0.88162, 0.8219, 1.0551, 0.71974, 0.56977, 0.61654, 0.48694, 0.75073, 0.6367, 0.97915, 0.00109, 0.00109, 0.00109
|
183 |
+
182, 0.88047, 0.81993, 1.0535, 0.72016, 0.57025, 0.61722, 0.48757, 0.75031, 0.6358, 0.97881, 0.0010405, 0.0010405, 0.0010405
|
184 |
+
183, 0.87974, 0.81682, 1.0538, 0.7215, 0.57118, 0.61799, 0.48821, 0.74987, 0.63487, 0.97848, 0.000991, 0.000991, 0.000991
|
185 |
+
184, 0.87991, 0.81894, 1.054, 0.71854, 0.57255, 0.61867, 0.48887, 0.74949, 0.63402, 0.97816, 0.0009415, 0.0009415, 0.0009415
|
186 |
+
185, 0.87679, 0.81539, 1.0525, 0.71902, 0.57346, 0.61933, 0.48941, 0.74894, 0.63306, 0.97781, 0.000892, 0.000892, 0.000892
|
187 |
+
186, 0.87546, 0.81123, 1.0523, 0.71831, 0.57439, 0.62004, 0.49003, 0.74844, 0.63215, 0.97748, 0.0008425, 0.0008425, 0.0008425
|
188 |
+
187, 0.87534, 0.81153, 1.0517, 0.71927, 0.57533, 0.62074, 0.49085, 0.74792, 0.63109, 0.97711, 0.000793, 0.000793, 0.000793
|
189 |
+
188, 0.87188, 0.80553, 1.0496, 0.72083, 0.5756, 0.62136, 0.49142, 0.74748, 0.63011, 0.97678, 0.0007435, 0.0007435, 0.0007435
|
190 |
+
189, 0.87068, 0.80351, 1.0486, 0.72109, 0.57659, 0.62217, 0.49205, 0.7471, 0.62927, 0.97647, 0.000694, 0.000694, 0.000694
|
191 |
+
190, 0.86876, 0.80252, 1.0492, 0.72171, 0.57618, 0.62281, 0.49263, 0.74666, 0.62836, 0.97611, 0.0006445, 0.0006445, 0.0006445
|
192 |
+
191, 0.82745, 0.72639, 1.0281, 0.72352, 0.57751, 0.62359, 0.49325, 0.74616, 0.62741, 0.97578, 0.000595, 0.000595, 0.000595
|
193 |
+
192, 0.82043, 0.71485, 1.0233, 0.72332, 0.57901, 0.6245, 0.49428, 0.74555, 0.62624, 0.97534, 0.0005455, 0.0005455, 0.0005455
|
194 |
+
193, 0.81746, 0.70858, 1.0211, 0.72349, 0.58009, 0.62533, 0.49516, 0.74478, 0.62488, 0.97483, 0.000496, 0.000496, 0.000496
|
195 |
+
194, 0.81335, 0.7028, 1.0186, 0.72349, 0.58066, 0.62603, 0.49595, 0.74395, 0.62347, 0.9743, 0.0004465, 0.0004465, 0.0004465
|
196 |
+
195, 0.81155, 0.69868, 1.0179, 0.72467, 0.58095, 0.627, 0.49695, 0.74316, 0.622, 0.97382, 0.000397, 0.000397, 0.000397
|
197 |
+
196, 0.80847, 0.69473, 1.0165, 0.7281, 0.5808, 0.62791, 0.49778, 0.74238, 0.62062, 0.97333, 0.0003475, 0.0003475, 0.0003475
|
198 |
+
197, 0.80742, 0.69038, 1.0147, 0.73044, 0.58066, 0.6288, 0.49855, 0.74164, 0.61923, 0.97283, 0.000298, 0.000298, 0.000298
|
199 |
+
198, 0.8043, 0.68724, 1.0145, 0.73193, 0.58124, 0.62975, 0.49956, 0.74098, 0.61783, 0.97236, 0.0002485, 0.0002485, 0.0002485
|
200 |
+
199, 0.80167, 0.68245, 1.0123, 0.73403, 0.58172, 0.63067, 0.50045, 0.74036, 0.61648, 0.97188, 0.000199, 0.000199, 0.000199
|
201 |
+
200, 0.79905, 0.68046, 1.012, 0.7365, 0.58251, 0.63146, 0.50123, 0.73973, 0.61522, 0.97147, 0.0001495, 0.0001495, 0.0001495
|
results/training-metrics/results.png
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch0.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch1.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch2.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch270940.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch270941.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/train_batch270942.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch0_labels.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch0_pred.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch1_labels.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch1_pred.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch2_labels.jpg
ADDED
![]() |
Git LFS Details
|
results/training-metrics/val_batch2_pred.jpg
ADDED
![]() |
Git LFS Details
|