Upload 3 files
Browse files- README.md +203 -23
- assets/loss.png +0 -0
- assets/thumbnail.webp +0 -0
README.md
CHANGED
@@ -1,23 +1,203 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<img src="assets/romulus-thumbnail.webp">
|
2 |
+
|
3 |
+
# Romulus, continued pre-trained models for French law.
|
4 |
+
|
5 |
+
Romulus is a series of continued pre-trained models enriched in French law and intended to serve as the basis for a fine-tuning process on labeled data. Please note that these models have not been aligned for the production of usable text as they stand, and will certainly need to be fine-tuned for the desired tasks in order to produce satisfactory results.
|
6 |
+
|
7 |
+
The training corpus is made up of around 34,864,949 tokens (calculated with the meta-llama/Meta-Llama-3.1-8B-Instruct tokenizer).
|
8 |
+
|
9 |
+
## Hyperparameters
|
10 |
+
|
11 |
+
The following table outlines the key hyperparameters used for training Romulus.
|
12 |
+
|
13 |
+
| **Parameter** | **Description** | **Value** |
|
14 |
+
|----------------------------------|-----------------------------------------------------------------|-----------------------------|
|
15 |
+
| `max_seq_length` | Maximum sequence length for the model | 4096 |
|
16 |
+
| `load_in_4bit` | Whether to load the model in 4-bit precision | False |
|
17 |
+
| `model_name` | Pre-trained model name from Hugging Face | meta-llama/Meta-Llama-3.1-8B|
|
18 |
+
| `r` | Rank of the LoRA adapter | 128 |
|
19 |
+
| `lora_alpha` | Alpha value for the LoRA module | 32 |
|
20 |
+
| `lora_dropout` | Dropout rate for LoRA layers | 0 |
|
21 |
+
| `bias` | Bias type for LoRA adapters | none |
|
22 |
+
| `use_gradient_checkpointing` | Whether to use gradient checkpointing | unsloth |
|
23 |
+
| `train_batch_size` | Per device training batch size | 8 |
|
24 |
+
| `gradient_accumulation_steps` | Number of gradient accumulation steps | 8 |
|
25 |
+
| `warmup_ratio` | Warmup steps as a fraction of total steps | 0.1 |
|
26 |
+
| `num_train_epochs` | Number of training epochs | 1 |
|
27 |
+
| `learning_rate` | Learning rate for the model | 5e-5 |
|
28 |
+
| `embedding_learning_rate` | Learning rate for embeddings | 1e-5 |
|
29 |
+
| `optim` | Optimizer used for training | adamw_8bit |
|
30 |
+
| `weight_decay` | Weight decay to prevent overfitting | 0.01 |
|
31 |
+
| `lr_scheduler_type` | Type of learning rate scheduler | linear |
|
32 |
+
|
33 |
+
# Training script
|
34 |
+
|
35 |
+
Romulus was trained using Unsloth on a Nvidia H100 Azure EST US instance provided by the Microsoft for Startups program from this script:
|
36 |
+
|
37 |
+
```python
|
38 |
+
# -*- coding: utf-8 -*-
|
39 |
+
import os
|
40 |
+
|
41 |
+
from typing import (
|
42 |
+
Dict,
|
43 |
+
)
|
44 |
+
|
45 |
+
from datasets import load_dataset
|
46 |
+
from unsloth import (
|
47 |
+
FastLanguageModel,
|
48 |
+
is_bfloat16_supported,
|
49 |
+
UnslothTrainer,
|
50 |
+
UnslothTrainingArguments,
|
51 |
+
)
|
52 |
+
|
53 |
+
max_seq_length = 4096
|
54 |
+
dtype = None
|
55 |
+
load_in_4bit = False
|
56 |
+
|
57 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
58 |
+
model_name="meta-llama/Meta-Llama-3.1-8B",
|
59 |
+
max_seq_length=max_seq_length,
|
60 |
+
dtype=dtype,
|
61 |
+
load_in_4bit=load_in_4bit,
|
62 |
+
token="hf_token",
|
63 |
+
)
|
64 |
+
|
65 |
+
model = FastLanguageModel.get_peft_model(
|
66 |
+
model,
|
67 |
+
r=128,
|
68 |
+
target_modules=[
|
69 |
+
"q_proj",
|
70 |
+
"k_proj",
|
71 |
+
"v_proj",
|
72 |
+
"o_proj",
|
73 |
+
"gate_proj",
|
74 |
+
"up_proj",
|
75 |
+
"down_proj",
|
76 |
+
"embed_tokens",
|
77 |
+
"lm_head",
|
78 |
+
],
|
79 |
+
lora_alpha=32,
|
80 |
+
lora_dropout=0,
|
81 |
+
bias="none",
|
82 |
+
use_gradient_checkpointing="unsloth",
|
83 |
+
random_state=3407,
|
84 |
+
use_rslora=True,
|
85 |
+
loftq_config=None,
|
86 |
+
)
|
87 |
+
|
88 |
+
prompt = """### Référence :
|
89 |
+
{}
|
90 |
+
### Contenu :
|
91 |
+
{}"""
|
92 |
+
|
93 |
+
EOS_TOKEN = tokenizer.eos_token
|
94 |
+
|
95 |
+
def formatting_prompts_func(examples):
|
96 |
+
"""
|
97 |
+
Format input examples into prompts for a language model.
|
98 |
+
|
99 |
+
This function takes a dictionary of examples containing titles and texts,
|
100 |
+
combines them into formatted prompts, and appends an end-of-sequence token.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
examples : dict
|
105 |
+
A dictionary containing two keys:
|
106 |
+
- 'title': A list of titles.
|
107 |
+
- 'text': A list of corresponding text content.
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
dict
|
112 |
+
A dictionary with a single key 'text', containing a list of formatted prompts.
|
113 |
+
|
114 |
+
Notes
|
115 |
+
-----
|
116 |
+
- The function assumes the existence of a global `prompt` variable, which is a
|
117 |
+
formatting string used to combine the title and text.
|
118 |
+
- The function also assumes the existence of a global `EOS_TOKEN` variable,
|
119 |
+
which is appended to the end of each formatted prompt.
|
120 |
+
- The input lists 'title' and 'text' are expected to have the same length.
|
121 |
+
|
122 |
+
Examples
|
123 |
+
--------
|
124 |
+
>>> examples = {
|
125 |
+
... 'title': ['Title 1', 'Title 2'],
|
126 |
+
... 'text': ['Content 1', 'Content 2']
|
127 |
+
... }
|
128 |
+
>>> formatting_cpt_prompts_func(examples)
|
129 |
+
{'text': ['<formatted_prompt_1><EOS>', '<formatted_prompt_2><EOS>']}
|
130 |
+
"""
|
131 |
+
refs = examples["ref"]
|
132 |
+
texts = examples["texte"]
|
133 |
+
outputs = []
|
134 |
+
|
135 |
+
for ref, text in zip(refs, texts):
|
136 |
+
text = prompt.format(ref, text) + EOS_TOKEN
|
137 |
+
outputs.append(text)
|
138 |
+
|
139 |
+
return {
|
140 |
+
"text": outputs,
|
141 |
+
}
|
142 |
+
|
143 |
+
|
144 |
+
cpt_dataset = load_dataset(
|
145 |
+
"louisbrulenaudet/Romulus-cpt-fr",
|
146 |
+
split="train",
|
147 |
+
token="hf_token",
|
148 |
+
)
|
149 |
+
|
150 |
+
cpt_dataset = cpt_dataset.map(
|
151 |
+
formatting_prompts_func,
|
152 |
+
batched=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
trainer = UnslothTrainer(
|
156 |
+
model=model,
|
157 |
+
tokenizer=tokenizer,
|
158 |
+
train_dataset=cpt_dataset,
|
159 |
+
dataset_text_field="text",
|
160 |
+
max_seq_length=max_seq_length,
|
161 |
+
dataset_num_proc=2,
|
162 |
+
args=UnslothTrainingArguments(
|
163 |
+
per_device_train_batch_size=8,
|
164 |
+
gradient_accumulation_steps=8,
|
165 |
+
warmup_ratio=0.1,
|
166 |
+
num_train_epochs=1,
|
167 |
+
learning_rate=5e-5,
|
168 |
+
embedding_learning_rate=1e-5,
|
169 |
+
fp16=not is_bfloat16_supported(),
|
170 |
+
bf16=is_bfloat16_supported(),
|
171 |
+
logging_steps=1,
|
172 |
+
report_to="wandb",
|
173 |
+
save_steps=350,
|
174 |
+
run_name="romulus-cpt",
|
175 |
+
optim="adamw_8bit",
|
176 |
+
weight_decay=0.01,
|
177 |
+
lr_scheduler_type="linear",
|
178 |
+
seed=3407,
|
179 |
+
output_dir="outputs",
|
180 |
+
),
|
181 |
+
)
|
182 |
+
|
183 |
+
trainer_stats = trainer.train()
|
184 |
+
```
|
185 |
+
|
186 |
+
<img src="assets/loss.png">
|
187 |
+
|
188 |
+
## Citing & Authors
|
189 |
+
|
190 |
+
If you use this code in your research, please use the following BibTeX entry.
|
191 |
+
|
192 |
+
```BibTeX
|
193 |
+
@misc{louisbrulenaudet2024,
|
194 |
+
author = {Louis Brulé Naudet},
|
195 |
+
title = {Romulus, continued pre-trained models for French law},
|
196 |
+
year = {2024}
|
197 |
+
howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/Romulus-cpt-fr}},
|
198 |
+
}
|
199 |
+
```
|
200 |
+
|
201 |
+
## Feedback
|
202 |
+
|
203 |
+
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
|
assets/loss.png
ADDED
![]() |
assets/thumbnail.webp
ADDED
![]() |