Add new SentenceTransformer model with an onnx backend
Browse filesHello!
*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*
## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ORTModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"louisbrulenaudet/lemone-embed-s",
revision=f"refs/pr/{pr_number}",
backend="onnx",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
- config.json +1 -2
- config_sentence_transformers.json +4 -4
- onnx/model.onnx +3 -0
- tokenizer_config.json +8 -0
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "intfloat/multilingual-e5-small",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -19,7 +18,7 @@
|
|
19 |
"position_embedding_type": "absolute",
|
20 |
"tokenizer_class": "XLMRobertaTokenizer",
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 250037
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"BertModel"
|
4 |
],
|
|
|
18 |
"position_embedding_type": "absolute",
|
19 |
"tokenizer_class": "XLMRobertaTokenizer",
|
20 |
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.52.4",
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 250037
|
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name":
|
10 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.52.4",
|
5 |
+
"pytorch": "2.7.1"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3306fa2cd41f8b1046712739f60a9caa84032a8e300525fc5d72b6f0cad0e01
|
3 |
+
size 470373448
|
@@ -45,11 +45,19 @@
|
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
|
|
48 |
"mask_token": "<mask>",
|
|
|
49 |
"model_max_length": 512,
|
|
|
50 |
"pad_token": "<pad>",
|
|
|
|
|
51 |
"sep_token": "</s>",
|
52 |
"sp_model_kwargs": {},
|
|
|
53 |
"tokenizer_class": "XLMRobertaTokenizer",
|
|
|
|
|
54 |
"unk_token": "<unk>"
|
55 |
}
|
|
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
"mask_token": "<mask>",
|
50 |
+
"max_length": 512,
|
51 |
"model_max_length": 512,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
"sep_token": "</s>",
|
57 |
"sp_model_kwargs": {},
|
58 |
+
"stride": 0,
|
59 |
"tokenizer_class": "XLMRobertaTokenizer",
|
60 |
+
"truncation_side": "right",
|
61 |
+
"truncation_strategy": "longest_first",
|
62 |
"unk_token": "<unk>"
|
63 |
}
|