remove unused files
Browse files
train.log
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
2024-05-02 11:45:56,095 | DEBUG [axolotl.normalize_config:79] bf16 support detected, enabling for this configuration.
|
2 |
-
2024-05-02 11:45:56,096 | INFO [transformers.configuration_utils._get_config_dict:724] loading configuration file /data/model/Llama-3-8b/config.json
|
3 |
-
2024-05-02 11:45:56,096 | INFO [transformers.configuration_utils.from_dict:789] Model config LlamaConfig {
|
4 |
-
"_name_or_path": "/data/model/Llama-3-8b",
|
5 |
-
"architectures": [
|
6 |
-
"LlamaForCausalLM"
|
7 |
-
],
|
8 |
-
"attention_bias": false,
|
9 |
-
"attention_dropout": 0.0,
|
10 |
-
"bos_token_id": 128000,
|
11 |
-
"eos_token_id": 128001,
|
12 |
-
"hidden_act": "silu",
|
13 |
-
"hidden_size": 4096,
|
14 |
-
"initializer_range": 0.02,
|
15 |
-
"intermediate_size": 14336,
|
16 |
-
"max_position_embeddings": 8192,
|
17 |
-
"model_type": "llama",
|
18 |
-
"num_attention_heads": 32,
|
19 |
-
"num_hidden_layers": 32,
|
20 |
-
"num_key_value_heads": 8,
|
21 |
-
"pretraining_tp": 1,
|
22 |
-
"rms_norm_eps": 1e-05,
|
23 |
-
"rope_scaling": null,
|
24 |
-
"rope_theta": 500000.0,
|
25 |
-
"tie_word_embeddings": false,
|
26 |
-
"torch_dtype": "bfloat16",
|
27 |
-
"transformers_version": "4.40.1",
|
28 |
-
"use_cache": true,
|
29 |
-
"vocab_size": 128256
|
30 |
-
}
|
31 |
-
|
32 |
-
2024-05-02 11:45:56,097 | INFO [axolotl.normalize_config:182] GPU memory usage baseline: 0.000GB (+0.549GB misc)
|
33 |
-
2024-05-02 11:45:56,955 | INFO [transformers.configuration_utils._get_config_dict:724] loading configuration file /data/model/Llama-3-8b/config.json
|
34 |
-
2024-05-02 11:45:56,956 | INFO [transformers.configuration_utils.from_dict:789] Model config LlamaConfig {
|
35 |
-
"_name_or_path": "/data/model/Llama-3-8b",
|
36 |
-
"architectures": [
|
37 |
-
"LlamaForCausalLM"
|
38 |
-
],
|
39 |
-
"attention_bias": false,
|
40 |
-
"attention_dropout": 0.0,
|
41 |
-
"bos_token_id": 128000,
|
42 |
-
"eos_token_id": 128001,
|
43 |
-
"hidden_act": "silu",
|
44 |
-
"hidden_size": 4096,
|
45 |
-
"initializer_range": 0.02,
|
46 |
-
"intermediate_size": 14336,
|
47 |
-
"max_position_embeddings": 8192,
|
48 |
-
"model_type": "llama",
|
49 |
-
"num_attention_heads": 32,
|
50 |
-
"num_hidden_layers": 32,
|
51 |
-
"num_key_value_heads": 8,
|
52 |
-
"pretraining_tp": 1,
|
53 |
-
"rms_norm_eps": 1e-05,
|
54 |
-
"rope_scaling": null,
|
55 |
-
"rope_theta": 500000.0,
|
56 |
-
"tie_word_embeddings": false,
|
57 |
-
"torch_dtype": "bfloat16",
|
58 |
-
"transformers_version": "4.40.1",
|
59 |
-
"use_cache": true,
|
60 |
-
"vocab_size": 128256
|
61 |
-
}
|
62 |
-
|
63 |
-
2024-05-02 11:45:56,957 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file tokenizer.json
|
64 |
-
2024-05-02 11:45:56,957 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file added_tokens.json
|
65 |
-
2024-05-02 11:45:56,957 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file special_tokens_map.json
|
66 |
-
2024-05-02 11:45:56,957 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file tokenizer_config.json
|
67 |
-
2024-05-02 11:45:57,206 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
68 |
-
2024-05-02 11:45:57,217 | DEBUG [axolotl.load_tokenizer:279] EOS: 128256 / <|im_end|>
|
69 |
-
2024-05-02 11:45:57,217 | DEBUG [axolotl.load_tokenizer:280] BOS: 128000 / <|begin_of_text|>
|
70 |
-
2024-05-02 11:45:57,217 | DEBUG [axolotl.load_tokenizer:281] PAD: 128001 / <|end_of_text|>
|
71 |
-
2024-05-02 11:45:57,217 | DEBUG [axolotl.load_tokenizer:282] UNK: None / None
|
72 |
-
2024-05-02 11:45:57,217 | INFO [axolotl.load_tokenizer:293] No Chat template selected. Consider adding a chat template for easier inference.
|
73 |
-
2024-05-02 11:45:57,218 | INFO [axolotl.load_tokenized_prepared_datasets:179] Loading prepared dataset from disk at /data/tmp/6cfba792f99529f2f6dcd822d7aa03a3...
|
74 |
-
2024-05-02 11:45:57,234 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
75 |
-
2024-05-02 11:45:57,249 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
76 |
-
2024-05-02 11:45:57,278 | INFO [axolotl.load_tokenized_prepared_datasets:181] Prepared dataset loaded from disk...
|
77 |
-
2024-05-02 11:45:57,287 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
78 |
-
2024-05-02 11:45:57,289 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
79 |
-
2024-05-02 11:45:57,299 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
80 |
-
2024-05-02 11:46:05,941 | DEBUG [axolotl.log:61] total_num_tokens: 1_164_516_699
|
81 |
-
2024-05-02 11:46:22,526 | DEBUG [axolotl.log:61] `total_supervised_tokens: 703_439_150`
|
82 |
-
2024-05-02 11:46:27,222 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 1.0 total_num_tokens per device: 194086116
|
83 |
-
2024-05-02 11:46:27,222 | DEBUG [axolotl.log:61] data_loader_len: 366
|
84 |
-
2024-05-02 11:46:27,830 | INFO [axolotl.log:61] sample_packing_eff_est across ranks: [0.9735434055328369, 0.9736768007278442, 0.9736634492874146, 0.9736634492874146, 0.9735967516899109, 0.9736234545707703]
|
85 |
-
2024-05-02 11:46:27,831 | DEBUG [axolotl.log:61] sample_packing_eff_est: 0.98
|
86 |
-
2024-05-02 11:46:27,831 | DEBUG [axolotl.log:61] total_num_steps: 122
|
87 |
-
2024-05-02 11:46:27,855 | DEBUG [axolotl.train.log:61] loading tokenizer... /data/model/Llama-3-8b
|
88 |
-
2024-05-02 11:46:27,856 | INFO [transformers.configuration_utils._get_config_dict:724] loading configuration file /data/model/Llama-3-8b/config.json
|
89 |
-
2024-05-02 11:46:27,856 | INFO [transformers.configuration_utils.from_dict:789] Model config LlamaConfig {
|
90 |
-
"_name_or_path": "/data/model/Llama-3-8b",
|
91 |
-
"architectures": [
|
92 |
-
"LlamaForCausalLM"
|
93 |
-
],
|
94 |
-
"attention_bias": false,
|
95 |
-
"attention_dropout": 0.0,
|
96 |
-
"bos_token_id": 128000,
|
97 |
-
"eos_token_id": 128001,
|
98 |
-
"hidden_act": "silu",
|
99 |
-
"hidden_size": 4096,
|
100 |
-
"initializer_range": 0.02,
|
101 |
-
"intermediate_size": 14336,
|
102 |
-
"max_position_embeddings": 8192,
|
103 |
-
"model_type": "llama",
|
104 |
-
"num_attention_heads": 32,
|
105 |
-
"num_hidden_layers": 32,
|
106 |
-
"num_key_value_heads": 8,
|
107 |
-
"pretraining_tp": 1,
|
108 |
-
"rms_norm_eps": 1e-05,
|
109 |
-
"rope_scaling": null,
|
110 |
-
"rope_theta": 500000.0,
|
111 |
-
"tie_word_embeddings": false,
|
112 |
-
"torch_dtype": "bfloat16",
|
113 |
-
"transformers_version": "4.40.1",
|
114 |
-
"use_cache": true,
|
115 |
-
"vocab_size": 128256
|
116 |
-
}
|
117 |
-
|
118 |
-
2024-05-02 11:46:27,857 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file tokenizer.json
|
119 |
-
2024-05-02 11:46:27,857 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file added_tokens.json
|
120 |
-
2024-05-02 11:46:27,857 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file special_tokens_map.json
|
121 |
-
2024-05-02 11:46:27,857 | INFO [transformers.tokenization_utils_base.from_pretrained:2085] loading file tokenizer_config.json
|
122 |
-
2024-05-02 11:46:28,071 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
123 |
-
2024-05-02 11:46:28,072 | DEBUG [axolotl.load_tokenizer:279] EOS: 128256 / <|im_end|>
|
124 |
-
2024-05-02 11:46:28,072 | DEBUG [axolotl.load_tokenizer:280] BOS: 128000 / <|begin_of_text|>
|
125 |
-
2024-05-02 11:46:28,072 | DEBUG [axolotl.load_tokenizer:281] PAD: 128001 / <|end_of_text|>
|
126 |
-
2024-05-02 11:46:28,072 | DEBUG [axolotl.load_tokenizer:282] UNK: None / None
|
127 |
-
2024-05-02 11:46:28,072 | INFO [axolotl.load_tokenizer:293] No Chat template selected. Consider adding a chat template for easier inference.
|
128 |
-
2024-05-02 11:46:28,072 | DEBUG [axolotl.train.log:61] loading model
|
129 |
-
2024-05-02 11:46:28,076 | INFO [transformers.configuration_utils._get_config_dict:724] loading configuration file /data/model/Llama-3-8b/config.json
|
130 |
-
2024-05-02 11:46:28,076 | INFO [transformers.configuration_utils.from_dict:789] Model config LlamaConfig {
|
131 |
-
"_name_or_path": "/data/model/Llama-3-8b",
|
132 |
-
"architectures": [
|
133 |
-
"LlamaForCausalLM"
|
134 |
-
],
|
135 |
-
"attention_bias": false,
|
136 |
-
"attention_dropout": 0.0,
|
137 |
-
"bos_token_id": 128000,
|
138 |
-
"eos_token_id": 128001,
|
139 |
-
"hidden_act": "silu",
|
140 |
-
"hidden_size": 4096,
|
141 |
-
"initializer_range": 0.02,
|
142 |
-
"intermediate_size": 14336,
|
143 |
-
"max_position_embeddings": 8192,
|
144 |
-
"model_type": "llama",
|
145 |
-
"num_attention_heads": 32,
|
146 |
-
"num_hidden_layers": 32,
|
147 |
-
"num_key_value_heads": 8,
|
148 |
-
"pretraining_tp": 1,
|
149 |
-
"rms_norm_eps": 1e-05,
|
150 |
-
"rope_scaling": null,
|
151 |
-
"rope_theta": 500000.0,
|
152 |
-
"tie_word_embeddings": false,
|
153 |
-
"torch_dtype": "bfloat16",
|
154 |
-
"transformers_version": "4.40.1",
|
155 |
-
"use_cache": true,
|
156 |
-
"vocab_size": 128256
|
157 |
-
}
|
158 |
-
|
159 |
-
2024-05-02 11:46:28,079 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
160 |
-
2024-05-02 11:46:28,088 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
161 |
-
2024-05-02 11:46:28,088 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
162 |
-
2024-05-02 11:46:28,088 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
163 |
-
2024-05-02 11:46:28,095 | INFO [axolotl.load_model:359] patching with flash attention for sample packing
|
164 |
-
2024-05-02 11:46:28,095 | INFO [axolotl.load_model:408] patching _expand_mask
|
165 |
-
2024-05-02 11:46:28,095 | INFO [transformers.modeling_utils.from_pretrained:3427] loading weights file /data/model/Llama-3-8b/model.safetensors.index.json
|
166 |
-
2024-05-02 11:46:28,095 | INFO [transformers.modeling_utils._set_default_torch_dtype:1495] Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
|
167 |
-
2024-05-02 11:46:28,096 | INFO [transformers.generation.configuration_utils.from_dict:928] Generate config GenerationConfig {
|
168 |
-
"bos_token_id": 128000,
|
169 |
-
"eos_token_id": 128001
|
170 |
-
}
|
171 |
-
|
172 |
-
2024-05-02 11:46:28,098 | WARNING [transformers.tokenization_utils_base.warning_advice:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
173 |
-
2024-05-02 11:46:32,505 | INFO [transformers.modeling_utils._load_pretrained_model:4171] All model checkpoint weights were used when initializing LlamaForCausalLM.
|
174 |
-
|
175 |
-
2024-05-02 11:46:32,505 | INFO [transformers.modeling_utils._load_pretrained_model:4179] All the weights of LlamaForCausalLM were initialized from the model checkpoint at /data/model/Llama-3-8b.
|
176 |
-
If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
|
177 |
-
2024-05-02 11:46:32,507 | INFO [transformers.generation.configuration_utils.from_pretrained:881] loading configuration file /data/model/Llama-3-8b/generation_config.json
|
178 |
-
2024-05-02 11:46:32,507 | INFO [transformers.generation.configuration_utils.from_dict:928] Generate config GenerationConfig {
|
179 |
-
"bos_token_id": 128000,
|
180 |
-
"eos_token_id": [
|
181 |
-
128001,
|
182 |
-
128009
|
183 |
-
]
|
184 |
-
}
|
185 |
-
|
186 |
-
2024-05-02 11:46:32,553 | INFO [transformers.modeling_utils._get_resized_embeddings:1995] You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 128258. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
187 |
-
2024-05-02 11:46:32,559 | INFO [axolotl.load_model:728] GPU memory usage after model load: 15.083GB (+1.962GB cache, +3.402GB misc)
|
188 |
-
2024-05-02 11:46:32,563 | INFO [axolotl.load_model:788] converting modules to torch.bfloat16 for flash attention
|
189 |
-
2024-05-02 11:46:32,565 | DEBUG [axolotl.load_model:819] [('model.embed_tokens.weight', torch.bfloat16), ('model.layers.0.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.0.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.0.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.0.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.0.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.0.mlp.up_proj.weight', torch.bfloat16), ('model.layers.0.mlp.down_proj.weight', torch.bfloat16), ('model.layers.0.input_layernorm.weight', torch.bfloat16), ('model.layers.0.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.1.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.1.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.1.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.1.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.1.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.1.mlp.up_proj.weight', torch.bfloat16), ('model.layers.1.mlp.down_proj.weight', torch.bfloat16), ('model.layers.1.input_layernorm.weight', torch.bfloat16), ('model.layers.1.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.2.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.2.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.2.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.2.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.2.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.2.mlp.up_proj.weight', torch.bfloat16), ('model.layers.2.mlp.down_proj.weight', torch.bfloat16), ('model.layers.2.input_layernorm.weight', torch.bfloat16), ('model.layers.2.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.3.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.3.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.3.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.3.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.3.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.3.mlp.up_proj.weight', torch.bfloat16), ('model.layers.3.mlp.down_proj.weight', torch.bfloat16), ('model.layers.3.input_layernorm.weight', torch.bfloat16), ('model.layers.3.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.4.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.4.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.4.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.4.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.4.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.4.mlp.up_proj.weight', torch.bfloat16), ('model.layers.4.mlp.down_proj.weight', torch.bfloat16), ('model.layers.4.input_layernorm.weight', torch.bfloat16), ('model.layers.4.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.5.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.5.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.5.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.5.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.5.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.5.mlp.up_proj.weight', torch.bfloat16), ('model.layers.5.mlp.down_proj.weight', torch.bfloat16), ('model.layers.5.input_layernorm.weight', torch.bfloat16), ('model.layers.5.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.6.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.6.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.6.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.6.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.6.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.6.mlp.up_proj.weight', torch.bfloat16), ('model.layers.6.mlp.down_proj.weight', torch.bfloat16), ('model.layers.6.input_layernorm.weight', torch.bfloat16), ('model.layers.6.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.7.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.7.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.7.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.7.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.7.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.7.mlp.up_proj.weight', torch.bfloat16), ('model.layers.7.mlp.down_proj.weight', torch.bfloat16), ('model.layers.7.input_layernorm.weight', torch.bfloat16), ('model.layers.7.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.8.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.8.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.8.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.8.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.8.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.8.mlp.up_proj.weight', torch.bfloat16), ('model.layers.8.mlp.down_proj.weight', torch.bfloat16), ('model.layers.8.input_layernorm.weight', torch.bfloat16), ('model.layers.8.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.9.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.9.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.9.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.9.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.9.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.9.mlp.up_proj.weight', torch.bfloat16), ('model.layers.9.mlp.down_proj.weight', torch.bfloat16), ('model.layers.9.input_layernorm.weight', torch.bfloat16), ('model.layers.9.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.10.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.10.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.10.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.10.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.10.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.10.mlp.up_proj.weight', torch.bfloat16), ('model.layers.10.mlp.down_proj.weight', torch.bfloat16), ('model.layers.10.input_layernorm.weight', torch.bfloat16), ('model.layers.10.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.11.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.11.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.11.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.11.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.11.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.11.mlp.up_proj.weight', torch.bfloat16), ('model.layers.11.mlp.down_proj.weight', torch.bfloat16), ('model.layers.11.input_layernorm.weight', torch.bfloat16), ('model.layers.11.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.12.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.12.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.12.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.12.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.12.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.12.mlp.up_proj.weight', torch.bfloat16), ('model.layers.12.mlp.down_proj.weight', torch.bfloat16), ('model.layers.12.input_layernorm.weight', torch.bfloat16), ('model.layers.12.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.13.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.13.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.13.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.13.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.13.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.13.mlp.up_proj.weight', torch.bfloat16), ('model.layers.13.mlp.down_proj.weight', torch.bfloat16), ('model.layers.13.input_layernorm.weight', torch.bfloat16), ('model.layers.13.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.14.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.14.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.14.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.14.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.14.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.14.mlp.up_proj.weight', torch.bfloat16), ('model.layers.14.mlp.down_proj.weight', torch.bfloat16), ('model.layers.14.input_layernorm.weight', torch.bfloat16), ('model.layers.14.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.15.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.15.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.15.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.15.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.15.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.15.mlp.up_proj.weight', torch.bfloat16), ('model.layers.15.mlp.down_proj.weight', torch.bfloat16), ('model.layers.15.input_layernorm.weight', torch.bfloat16), ('model.layers.15.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.16.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.16.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.16.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.16.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.16.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.16.mlp.up_proj.weight', torch.bfloat16), ('model.layers.16.mlp.down_proj.weight', torch.bfloat16), ('model.layers.16.input_layernorm.weight', torch.bfloat16), ('model.layers.16.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.17.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.17.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.17.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.17.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.17.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.17.mlp.up_proj.weight', torch.bfloat16), ('model.layers.17.mlp.down_proj.weight', torch.bfloat16), ('model.layers.17.input_layernorm.weight', torch.bfloat16), ('model.layers.17.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.18.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.18.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.18.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.18.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.18.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.18.mlp.up_proj.weight', torch.bfloat16), ('model.layers.18.mlp.down_proj.weight', torch.bfloat16), ('model.layers.18.input_layernorm.weight', torch.bfloat16), ('model.layers.18.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.19.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.19.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.19.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.19.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.19.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.19.mlp.up_proj.weight', torch.bfloat16), ('model.layers.19.mlp.down_proj.weight', torch.bfloat16), ('model.layers.19.input_layernorm.weight', torch.bfloat16), ('model.layers.19.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.20.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.20.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.20.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.20.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.20.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.20.mlp.up_proj.weight', torch.bfloat16), ('model.layers.20.mlp.down_proj.weight', torch.bfloat16), ('model.layers.20.input_layernorm.weight', torch.bfloat16), ('model.layers.20.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.21.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.21.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.21.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.21.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.21.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.21.mlp.up_proj.weight', torch.bfloat16), ('model.layers.21.mlp.down_proj.weight', torch.bfloat16), ('model.layers.21.input_layernorm.weight', torch.bfloat16), ('model.layers.21.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.22.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.22.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.22.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.22.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.22.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.22.mlp.up_proj.weight', torch.bfloat16), ('model.layers.22.mlp.down_proj.weight', torch.bfloat16), ('model.layers.22.input_layernorm.weight', torch.bfloat16), ('model.layers.22.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.23.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.23.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.23.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.23.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.23.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.23.mlp.up_proj.weight', torch.bfloat16), ('model.layers.23.mlp.down_proj.weight', torch.bfloat16), ('model.layers.23.input_layernorm.weight', torch.bfloat16), ('model.layers.23.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.24.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.24.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.24.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.24.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.24.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.24.mlp.up_proj.weight', torch.bfloat16), ('model.layers.24.mlp.down_proj.weight', torch.bfloat16), ('model.layers.24.input_layernorm.weight', torch.bfloat16), ('model.layers.24.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.25.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.25.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.25.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.25.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.25.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.25.mlp.up_proj.weight', torch.bfloat16), ('model.layers.25.mlp.down_proj.weight', torch.bfloat16), ('model.layers.25.input_layernorm.weight', torch.bfloat16), ('model.layers.25.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.26.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.26.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.26.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.26.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.26.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.26.mlp.up_proj.weight', torch.bfloat16), ('model.layers.26.mlp.down_proj.weight', torch.bfloat16), ('model.layers.26.input_layernorm.weight', torch.bfloat16), ('model.layers.26.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.27.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.27.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.27.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.27.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.27.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.27.mlp.up_proj.weight', torch.bfloat16), ('model.layers.27.mlp.down_proj.weight', torch.bfloat16), ('model.layers.27.input_layernorm.weight', torch.bfloat16), ('model.layers.27.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.28.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.28.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.28.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.28.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.28.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.28.mlp.up_proj.weight', torch.bfloat16), ('model.layers.28.mlp.down_proj.weight', torch.bfloat16), ('model.layers.28.input_layernorm.weight', torch.bfloat16), ('model.layers.28.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.29.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.29.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.29.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.29.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.29.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.29.mlp.up_proj.weight', torch.bfloat16), ('model.layers.29.mlp.down_proj.weight', torch.bfloat16), ('model.layers.29.input_layernorm.weight', torch.bfloat16), ('model.layers.29.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.30.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.30.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.30.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.30.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.30.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.30.mlp.up_proj.weight', torch.bfloat16), ('model.layers.30.mlp.down_proj.weight', torch.bfloat16), ('model.layers.30.input_layernorm.weight', torch.bfloat16), ('model.layers.30.post_attention_layernorm.weight', torch.bfloat16), ('model.layers.31.self_attn.q_proj.weight', torch.bfloat16), ('model.layers.31.self_attn.k_proj.weight', torch.bfloat16), ('model.layers.31.self_attn.v_proj.weight', torch.bfloat16), ('model.layers.31.self_attn.o_proj.weight', torch.bfloat16), ('model.layers.31.mlp.gate_proj.weight', torch.bfloat16), ('model.layers.31.mlp.up_proj.weight', torch.bfloat16), ('model.layers.31.mlp.down_proj.weight', torch.bfloat16), ('model.layers.31.input_layernorm.weight', torch.bfloat16), ('model.layers.31.post_attention_layernorm.weight', torch.bfloat16), ('model.norm.weight', torch.bfloat16), ('lm_head.weight', torch.bfloat16)]
|
190 |
-
2024-05-02 11:46:32,566 | DEBUG [axolotl.load_model:820] ['model.embed_tokens.weight', 'model.layers.0.self_attn.q_proj.weight', 'model.layers.0.self_attn.k_proj.weight', 'model.layers.0.self_attn.v_proj.weight', 'model.layers.0.self_attn.o_proj.weight', 'model.layers.0.mlp.gate_proj.weight', 'model.layers.0.mlp.up_proj.weight', 'model.layers.0.mlp.down_proj.weight', 'model.layers.0.input_layernorm.weight', 'model.layers.0.post_attention_layernorm.weight', 'model.layers.1.self_attn.q_proj.weight', 'model.layers.1.self_attn.k_proj.weight', 'model.layers.1.self_attn.v_proj.weight', 'model.layers.1.self_attn.o_proj.weight', 'model.layers.1.mlp.gate_proj.weight', 'model.layers.1.mlp.up_proj.weight', 'model.layers.1.mlp.down_proj.weight', 'model.layers.1.input_layernorm.weight', 'model.layers.1.post_attention_layernorm.weight', 'model.layers.2.self_attn.q_proj.weight', 'model.layers.2.self_attn.k_proj.weight', 'model.layers.2.self_attn.v_proj.weight', 'model.layers.2.self_attn.o_proj.weight', 'model.layers.2.mlp.gate_proj.weight', 'model.layers.2.mlp.up_proj.weight', 'model.layers.2.mlp.down_proj.weight', 'model.layers.2.input_layernorm.weight', 'model.layers.2.post_attention_layernorm.weight', 'model.layers.3.self_attn.q_proj.weight', 'model.layers.3.self_attn.k_proj.weight', 'model.layers.3.self_attn.v_proj.weight', 'model.layers.3.self_attn.o_proj.weight', 'model.layers.3.mlp.gate_proj.weight', 'model.layers.3.mlp.up_proj.weight', 'model.layers.3.mlp.down_proj.weight', 'model.layers.3.input_layernorm.weight', 'model.layers.3.post_attention_layernorm.weight', 'model.layers.4.self_attn.q_proj.weight', 'model.layers.4.self_attn.k_proj.weight', 'model.layers.4.self_attn.v_proj.weight', 'model.layers.4.self_attn.o_proj.weight', 'model.layers.4.mlp.gate_proj.weight', 'model.layers.4.mlp.up_proj.weight', 'model.layers.4.mlp.down_proj.weight', 'model.layers.4.input_layernorm.weight', 'model.layers.4.post_attention_layernorm.weight', 'model.layers.5.self_attn.q_proj.weight', 'model.layers.5.self_attn.k_proj.weight', 'model.layers.5.self_attn.v_proj.weight', 'model.layers.5.self_attn.o_proj.weight', 'model.layers.5.mlp.gate_proj.weight', 'model.layers.5.mlp.up_proj.weight', 'model.layers.5.mlp.down_proj.weight', 'model.layers.5.input_layernorm.weight', 'model.layers.5.post_attention_layernorm.weight', 'model.layers.6.self_attn.q_proj.weight', 'model.layers.6.self_attn.k_proj.weight', 'model.layers.6.self_attn.v_proj.weight', 'model.layers.6.self_attn.o_proj.weight', 'model.layers.6.mlp.gate_proj.weight', 'model.layers.6.mlp.up_proj.weight', 'model.layers.6.mlp.down_proj.weight', 'model.layers.6.input_layernorm.weight', 'model.layers.6.post_attention_layernorm.weight', 'model.layers.7.self_attn.q_proj.weight', 'model.layers.7.self_attn.k_proj.weight', 'model.layers.7.self_attn.v_proj.weight', 'model.layers.7.self_attn.o_proj.weight', 'model.layers.7.mlp.gate_proj.weight', 'model.layers.7.mlp.up_proj.weight', 'model.layers.7.mlp.down_proj.weight', 'model.layers.7.input_layernorm.weight', 'model.layers.7.post_attention_layernorm.weight', 'model.layers.8.self_attn.q_proj.weight', 'model.layers.8.self_attn.k_proj.weight', 'model.layers.8.self_attn.v_proj.weight', 'model.layers.8.self_attn.o_proj.weight', 'model.layers.8.mlp.gate_proj.weight', 'model.layers.8.mlp.up_proj.weight', 'model.layers.8.mlp.down_proj.weight', 'model.layers.8.input_layernorm.weight', 'model.layers.8.post_attention_layernorm.weight', 'model.layers.9.self_attn.q_proj.weight', 'model.layers.9.self_attn.k_proj.weight', 'model.layers.9.self_attn.v_proj.weight', 'model.layers.9.self_attn.o_proj.weight', 'model.layers.9.mlp.gate_proj.weight', 'model.layers.9.mlp.up_proj.weight', 'model.layers.9.mlp.down_proj.weight', 'model.layers.9.input_layernorm.weight', 'model.layers.9.post_attention_layernorm.weight', 'model.layers.10.self_attn.q_proj.weight', 'model.layers.10.self_attn.k_proj.weight', 'model.layers.10.self_attn.v_proj.weight', 'model.layers.10.self_attn.o_proj.weight', 'model.layers.10.mlp.gate_proj.weight', 'model.layers.10.mlp.up_proj.weight', 'model.layers.10.mlp.down_proj.weight', 'model.layers.10.input_layernorm.weight', 'model.layers.10.post_attention_layernorm.weight', 'model.layers.11.self_attn.q_proj.weight', 'model.layers.11.self_attn.k_proj.weight', 'model.layers.11.self_attn.v_proj.weight', 'model.layers.11.self_attn.o_proj.weight', 'model.layers.11.mlp.gate_proj.weight', 'model.layers.11.mlp.up_proj.weight', 'model.layers.11.mlp.down_proj.weight', 'model.layers.11.input_layernorm.weight', 'model.layers.11.post_attention_layernorm.weight', 'model.layers.12.self_attn.q_proj.weight', 'model.layers.12.self_attn.k_proj.weight', 'model.layers.12.self_attn.v_proj.weight', 'model.layers.12.self_attn.o_proj.weight', 'model.layers.12.mlp.gate_proj.weight', 'model.layers.12.mlp.up_proj.weight', 'model.layers.12.mlp.down_proj.weight', 'model.layers.12.input_layernorm.weight', 'model.layers.12.post_attention_layernorm.weight', 'model.layers.13.self_attn.q_proj.weight', 'model.layers.13.self_attn.k_proj.weight', 'model.layers.13.self_attn.v_proj.weight', 'model.layers.13.self_attn.o_proj.weight', 'model.layers.13.mlp.gate_proj.weight', 'model.layers.13.mlp.up_proj.weight', 'model.layers.13.mlp.down_proj.weight', 'model.layers.13.input_layernorm.weight', 'model.layers.13.post_attention_layernorm.weight', 'model.layers.14.self_attn.q_proj.weight', 'model.layers.14.self_attn.k_proj.weight', 'model.layers.14.self_attn.v_proj.weight', 'model.layers.14.self_attn.o_proj.weight', 'model.layers.14.mlp.gate_proj.weight', 'model.layers.14.mlp.up_proj.weight', 'model.layers.14.mlp.down_proj.weight', 'model.layers.14.input_layernorm.weight', 'model.layers.14.post_attention_layernorm.weight', 'model.layers.15.self_attn.q_proj.weight', 'model.layers.15.self_attn.k_proj.weight', 'model.layers.15.self_attn.v_proj.weight', 'model.layers.15.self_attn.o_proj.weight', 'model.layers.15.mlp.gate_proj.weight', 'model.layers.15.mlp.up_proj.weight', 'model.layers.15.mlp.down_proj.weight', 'model.layers.15.input_layernorm.weight', 'model.layers.15.post_attention_layernorm.weight', 'model.layers.16.self_attn.q_proj.weight', 'model.layers.16.self_attn.k_proj.weight', 'model.layers.16.self_attn.v_proj.weight', 'model.layers.16.self_attn.o_proj.weight', 'model.layers.16.mlp.gate_proj.weight', 'model.layers.16.mlp.up_proj.weight', 'model.layers.16.mlp.down_proj.weight', 'model.layers.16.input_layernorm.weight', 'model.layers.16.post_attention_layernorm.weight', 'model.layers.17.self_attn.q_proj.weight', 'model.layers.17.self_attn.k_proj.weight', 'model.layers.17.self_attn.v_proj.weight', 'model.layers.17.self_attn.o_proj.weight', 'model.layers.17.mlp.gate_proj.weight', 'model.layers.17.mlp.up_proj.weight', 'model.layers.17.mlp.down_proj.weight', 'model.layers.17.input_layernorm.weight', 'model.layers.17.post_attention_layernorm.weight', 'model.layers.18.self_attn.q_proj.weight', 'model.layers.18.self_attn.k_proj.weight', 'model.layers.18.self_attn.v_proj.weight', 'model.layers.18.self_attn.o_proj.weight', 'model.layers.18.mlp.gate_proj.weight', 'model.layers.18.mlp.up_proj.weight', 'model.layers.18.mlp.down_proj.weight', 'model.layers.18.input_layernorm.weight', 'model.layers.18.post_attention_layernorm.weight', 'model.layers.19.self_attn.q_proj.weight', 'model.layers.19.self_attn.k_proj.weight', 'model.layers.19.self_attn.v_proj.weight', 'model.layers.19.self_attn.o_proj.weight', 'model.layers.19.mlp.gate_proj.weight', 'model.layers.19.mlp.up_proj.weight', 'model.layers.19.mlp.down_proj.weight', 'model.layers.19.input_layernorm.weight', 'model.layers.19.post_attention_layernorm.weight', 'model.layers.20.self_attn.q_proj.weight', 'model.layers.20.self_attn.k_proj.weight', 'model.layers.20.self_attn.v_proj.weight', 'model.layers.20.self_attn.o_proj.weight', 'model.layers.20.mlp.gate_proj.weight', 'model.layers.20.mlp.up_proj.weight', 'model.layers.20.mlp.down_proj.weight', 'model.layers.20.input_layernorm.weight', 'model.layers.20.post_attention_layernorm.weight', 'model.layers.21.self_attn.q_proj.weight', 'model.layers.21.self_attn.k_proj.weight', 'model.layers.21.self_attn.v_proj.weight', 'model.layers.21.self_attn.o_proj.weight', 'model.layers.21.mlp.gate_proj.weight', 'model.layers.21.mlp.up_proj.weight', 'model.layers.21.mlp.down_proj.weight', 'model.layers.21.input_layernorm.weight', 'model.layers.21.post_attention_layernorm.weight', 'model.layers.22.self_attn.q_proj.weight', 'model.layers.22.self_attn.k_proj.weight', 'model.layers.22.self_attn.v_proj.weight', 'model.layers.22.self_attn.o_proj.weight', 'model.layers.22.mlp.gate_proj.weight', 'model.layers.22.mlp.up_proj.weight', 'model.layers.22.mlp.down_proj.weight', 'model.layers.22.input_layernorm.weight', 'model.layers.22.post_attention_layernorm.weight', 'model.layers.23.self_attn.q_proj.weight', 'model.layers.23.self_attn.k_proj.weight', 'model.layers.23.self_attn.v_proj.weight', 'model.layers.23.self_attn.o_proj.weight', 'model.layers.23.mlp.gate_proj.weight', 'model.layers.23.mlp.up_proj.weight', 'model.layers.23.mlp.down_proj.weight', 'model.layers.23.input_layernorm.weight', 'model.layers.23.post_attention_layernorm.weight', 'model.layers.24.self_attn.q_proj.weight', 'model.layers.24.self_attn.k_proj.weight', 'model.layers.24.self_attn.v_proj.weight', 'model.layers.24.self_attn.o_proj.weight', 'model.layers.24.mlp.gate_proj.weight', 'model.layers.24.mlp.up_proj.weight', 'model.layers.24.mlp.down_proj.weight', 'model.layers.24.input_layernorm.weight', 'model.layers.24.post_attention_layernorm.weight', 'model.layers.25.self_attn.q_proj.weight', 'model.layers.25.self_attn.k_proj.weight', 'model.layers.25.self_attn.v_proj.weight', 'model.layers.25.self_attn.o_proj.weight', 'model.layers.25.mlp.gate_proj.weight', 'model.layers.25.mlp.up_proj.weight', 'model.layers.25.mlp.down_proj.weight', 'model.layers.25.input_layernorm.weight', 'model.layers.25.post_attention_layernorm.weight', 'model.layers.26.self_attn.q_proj.weight', 'model.layers.26.self_attn.k_proj.weight', 'model.layers.26.self_attn.v_proj.weight', 'model.layers.26.self_attn.o_proj.weight', 'model.layers.26.mlp.gate_proj.weight', 'model.layers.26.mlp.up_proj.weight', 'model.layers.26.mlp.down_proj.weight', 'model.layers.26.input_layernorm.weight', 'model.layers.26.post_attention_layernorm.weight', 'model.layers.27.self_attn.q_proj.weight', 'model.layers.27.self_attn.k_proj.weight', 'model.layers.27.self_attn.v_proj.weight', 'model.layers.27.self_attn.o_proj.weight', 'model.layers.27.mlp.gate_proj.weight', 'model.layers.27.mlp.up_proj.weight', 'model.layers.27.mlp.down_proj.weight', 'model.layers.27.input_layernorm.weight', 'model.layers.27.post_attention_layernorm.weight', 'model.layers.28.self_attn.q_proj.weight', 'model.layers.28.self_attn.k_proj.weight', 'model.layers.28.self_attn.v_proj.weight', 'model.layers.28.self_attn.o_proj.weight', 'model.layers.28.mlp.gate_proj.weight', 'model.layers.28.mlp.up_proj.weight', 'model.layers.28.mlp.down_proj.weight', 'model.layers.28.input_layernorm.weight', 'model.layers.28.post_attention_layernorm.weight', 'model.layers.29.self_attn.q_proj.weight', 'model.layers.29.self_attn.k_proj.weight', 'model.layers.29.self_attn.v_proj.weight', 'model.layers.29.self_attn.o_proj.weight', 'model.layers.29.mlp.gate_proj.weight', 'model.layers.29.mlp.up_proj.weight', 'model.layers.29.mlp.down_proj.weight', 'model.layers.29.input_layernorm.weight', 'model.layers.29.post_attention_layernorm.weight', 'model.layers.30.self_attn.q_proj.weight', 'model.layers.30.self_attn.k_proj.weight', 'model.layers.30.self_attn.v_proj.weight', 'model.layers.30.self_attn.o_proj.weight', 'model.layers.30.mlp.gate_proj.weight', 'model.layers.30.mlp.up_proj.weight', 'model.layers.30.mlp.down_proj.weight', 'model.layers.30.input_layernorm.weight', 'model.layers.30.post_attention_layernorm.weight', 'model.layers.31.self_attn.q_proj.weight', 'model.layers.31.self_attn.k_proj.weight', 'model.layers.31.self_attn.v_proj.weight', 'model.layers.31.self_attn.o_proj.weight', 'model.layers.31.mlp.gate_proj.weight', 'model.layers.31.mlp.up_proj.weight', 'model.layers.31.mlp.down_proj.weight', 'model.layers.31.input_layernorm.weight', 'model.layers.31.post_attention_layernorm.weight', 'model.norm.weight', 'lm_head.weight']
|
191 |
-
2024-05-02 11:46:32,569 | INFO [transformers.training_args._setup_devices:1997] PyTorch: setting up devices
|
192 |
-
2024-05-02 11:46:32,855 | INFO [transformers.trainer.__init__:626] Using auto half precision backend
|
193 |
-
2024-05-02 11:46:32,858 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/tokenizer_config.json
|
194 |
-
2024-05-02 11:46:32,858 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/special_tokens_map.json
|
195 |
-
2024-05-02 11:46:32,973 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/config.json
|
196 |
-
2024-05-02 11:46:32,975 | INFO [axolotl.train.log:61] Starting trainer...
|
197 |
-
2024-05-02 11:46:34,574 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
198 |
-
2024-05-02 11:46:35,882 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
199 |
-
2024-05-02 11:46:37,197 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
200 |
-
2024-05-02 11:46:38,742 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
201 |
-
2024-05-02 11:47:01,151 | INFO [transformers.integrations.deepspeed.deepspeed_load_checkpoint:430] Attempting to resume from /data/llama3-20240502-0354/checkpoint-374/
|
202 |
-
2024-05-02 11:47:27,406 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
203 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
204 |
-
2024-05-02 11:47:27,531 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
205 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
206 |
-
2024-05-02 11:47:27,742 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
207 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
208 |
-
2024-05-02 11:47:28,329 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
209 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
210 |
-
2024-05-02 11:47:28,336 | INFO [transformers.trainer._inner_training_loop:2048] ***** Running training *****
|
211 |
-
2024-05-02 11:47:28,336 | INFO [transformers.trainer._inner_training_loop:2049] Num examples = 2,296,433
|
212 |
-
2024-05-02 11:47:28,337 | INFO [transformers.trainer._inner_training_loop:2050] Num Epochs = 2
|
213 |
-
2024-05-02 11:47:28,337 | INFO [transformers.trainer._inner_training_loop:2051] Instantaneous batch size per device = 4
|
214 |
-
2024-05-02 11:47:28,337 | INFO [transformers.trainer._inner_training_loop:2054] Total train batch size (w. parallel, distributed & accumulation) = 192
|
215 |
-
2024-05-02 11:47:28,337 | INFO [transformers.trainer._inner_training_loop:2055] Gradient Accumulation steps = 8
|
216 |
-
2024-05-02 11:47:28,337 | INFO [transformers.trainer._inner_training_loop:2056] Total optimization steps = 2,990
|
217 |
-
2024-05-02 11:47:28,338 | INFO [transformers.trainer._inner_training_loop:2057] Number of trainable parameters = 8,030,277,632
|
218 |
-
2024-05-02 11:47:28,339 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
219 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
220 |
-
2024-05-02 11:47:28,339 | INFO [transformers.trainer._inner_training_loop:2078] Continuing training from checkpoint, will skip to saved global_step
|
221 |
-
2024-05-02 11:47:28,339 | INFO [transformers.trainer._inner_training_loop:2079] Continuing training from epoch 0
|
222 |
-
2024-05-02 11:47:28,339 | INFO [transformers.trainer._inner_training_loop:2080] Continuing training from global step 374
|
223 |
-
2024-05-02 11:47:28,339 | INFO [transformers.trainer._inner_training_loop:2082] Will skip the first 0 epochs then the first 2992 batches in the first epoch.
|
224 |
-
2024-05-02 11:47:28,340 | INFO [transformers.integrations.integration_utils.setup:723] Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"
|
225 |
-
2024-05-02 11:47:28,363 | WARNING [transformers.trainer.warning_once:329] Warning: The following arguments do not match the ones in the `trainer_state.json` within the checkpoint directory:
|
226 |
-
save_steps: 0.125 (from args) != 374 (from trainer_state.json)
|
227 |
-
2024-05-02 11:47:31,882 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
228 |
-
2024-05-02 11:47:31,940 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
229 |
-
2024-05-02 11:47:32,136 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
230 |
-
2024-05-02 11:47:32,555 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
231 |
-
2024-05-02 11:47:32,634 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
232 |
-
2024-05-02 11:47:33,242 | INFO [axolotl.callbacks.on_train_begin:770] The Axolotl config has been saved to the WandB run under files.
|
233 |
-
2024-05-02 11:47:34,618 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
234 |
-
2024-05-02 11:47:35,888 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
235 |
-
2024-05-02 11:47:37,139 | WARNING [transformers.tokenization_utils_base.warning_advice:314] You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
236 |
-
2024-05-02 11:47:58,600 | INFO [axolotl.callbacks.on_step_end:125] GPU memory usage while training: 22.630GB (+41.110GB cache, +4.486GB misc)
|
237 |
-
2024-05-02 14:01:51,604 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-748
|
238 |
-
2024-05-02 14:01:51,606 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-748/config.json
|
239 |
-
2024-05-02 14:01:51,606 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-748/generation_config.json
|
240 |
-
2024-05-02 14:02:09,434 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-748/model.safetensors.index.json.
|
241 |
-
2024-05-02 14:02:09,436 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-748/tokenizer_config.json
|
242 |
-
2024-05-02 14:02:09,436 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-748/special_tokens_map.json
|
243 |
-
2024-05-02 16:16:45,380 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-1122
|
244 |
-
2024-05-02 16:16:45,381 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-1122/config.json
|
245 |
-
2024-05-02 16:16:45,381 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-1122/generation_config.json
|
246 |
-
2024-05-02 16:17:02,798 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-1122/model.safetensors.index.json.
|
247 |
-
2024-05-02 16:17:02,801 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-1122/tokenizer_config.json
|
248 |
-
2024-05-02 16:17:02,801 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-1122/special_tokens_map.json
|
249 |
-
2024-05-02 18:31:50,550 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-1496
|
250 |
-
2024-05-02 18:31:50,551 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-1496/config.json
|
251 |
-
2024-05-02 18:31:50,551 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-1496/generation_config.json
|
252 |
-
2024-05-02 18:32:08,833 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-1496/model.safetensors.index.json.
|
253 |
-
2024-05-02 18:32:08,835 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-1496/tokenizer_config.json
|
254 |
-
2024-05-02 18:32:08,835 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-1496/special_tokens_map.json
|
255 |
-
2024-05-02 18:41:39,260 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
256 |
-
2024-05-02 18:41:40,581 | INFO [axolotl.utils.samplers.multipack._len_est:184] packing_efficiency_estimate: 0.98 total_num_tokens per device: 194086116
|
257 |
-
2024-05-02 20:46:55,686 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-1870
|
258 |
-
2024-05-02 20:46:55,687 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-1870/config.json
|
259 |
-
2024-05-02 20:46:55,687 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-1870/generation_config.json
|
260 |
-
2024-05-02 20:47:14,819 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-1870/model.safetensors.index.json.
|
261 |
-
2024-05-02 20:47:14,821 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-1870/tokenizer_config.json
|
262 |
-
2024-05-02 20:47:14,821 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-1870/special_tokens_map.json
|
263 |
-
2024-05-02 23:02:03,882 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-2244
|
264 |
-
2024-05-02 23:02:03,883 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-2244/config.json
|
265 |
-
2024-05-02 23:02:03,883 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-2244/generation_config.json
|
266 |
-
2024-05-02 23:02:21,841 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-2244/model.safetensors.index.json.
|
267 |
-
2024-05-02 23:02:21,843 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-2244/tokenizer_config.json
|
268 |
-
2024-05-02 23:02:21,844 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-2244/special_tokens_map.json
|
269 |
-
2024-05-03 01:17:09,150 | INFO [transformers.trainer._save:3305] Saving model checkpoint to /data/llama3-20240502-1145/checkpoint-2618
|
270 |
-
2024-05-03 01:17:09,152 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/checkpoint-2618/config.json
|
271 |
-
2024-05-03 01:17:09,152 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/checkpoint-2618/generation_config.json
|
272 |
-
2024-05-03 01:17:27,948 | INFO [transformers.modeling_utils.save_pretrained:2599] The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /data/llama3-20240502-1145/checkpoint-2618/model.safetensors.index.json.
|
273 |
-
2024-05-03 01:17:27,950 | INFO [transformers.tokenization_utils_base.save_pretrained:2488] tokenizer config file saved in /data/llama3-20240502-1145/checkpoint-2618/tokenizer_config.json
|
274 |
-
2024-05-03 01:17:27,950 | INFO [transformers.tokenization_utils_base.save_pretrained:2497] Special tokens file saved in /data/llama3-20240502-1145/checkpoint-2618/special_tokens_map.json
|
275 |
-
2024-05-03 03:31:21,185 | INFO [transformers.trainer._inner_training_loop:2316]
|
276 |
-
|
277 |
-
Training completed. Do not forget to share your model on huggingface.co/models =)
|
278 |
-
|
279 |
-
|
280 |
-
2024-05-03 03:31:21,193 | INFO [axolotl.train.log:61] Training Completed!!! Saving pre-trained model to /data/llama3-20240502-1145
|
281 |
-
2024-05-03 03:31:21,195 | INFO [transformers.configuration_utils.save_pretrained:471] Configuration saved in /data/llama3-20240502-1145/config.json
|
282 |
-
2024-05-03 03:31:21,196 | INFO [transformers.generation.configuration_utils.save_pretrained:697] Configuration saved in /data/llama3-20240502-1145/generation_config.json
|
283 |
-
2024-05-03 03:31:43,036 | INFO [transformers.modeling_utils.save_pretrained:2591] Model weights saved in /data/llama3-20240502-1145/pytorch_model.bin
|
284 |
-
2024-05-03 03:31:43,039 | INFO [transformers.modelcard.create_model_index:450] Dropping the following result as it does not have all the necessary fields:
|
285 |
-
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|