File size: 9,916 Bytes
6241c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: "most of the results look perfectly healthy, but there are a few that are\
    \ over thresholds, they are: \n\n "
- text: 'so here''s my question: is it possible to have a very slow natural breathing
    rate and be healthy?'
- text: 'never had an issue with reflux before, i eat very healthy....but gave it
    a go.  '
- text: does every other person at their healthy weight range feel like this all the
    time?
- text: penis overall just looks very unhealthy compared to last year and i have no
    idea what it could be and everywhere i’ve looked suggest it is penile cancer.
metrics:
- accuracy
- precision
- recall
- f1
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9411764705882353
      name: Accuracy
    - type: precision
      value: 0.9411764705882353
      name: Precision
    - type: recall
      value: 0.9411764705882353
      name: Recall
    - type: f1
      value: 0.9411764705882353
      name: F1
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lifestyle | <ul><li>'i am 21, live a healthy lifestyle, i don’t smoke and only drink socially every once in a while.'</li><li>'i know staying up all night and sleeping during the day isnt good for you, brain wise and hormonaly, i will try my best to eat healthy and have good sleep hygiene, but am i risking my health or anything ?'</li><li>'i have been eating a bit more unhealthy foods like fried foods.\n\n'</li></ul>                                       |
| disease   | <ul><li>'i was told there’s no way to know what caused it &amp; no treatment options or ways to help fix it besides med options to help manage symptoms but my doc doesn’t want to start that yet due to me being “young &amp; healthy”.'</li><li>"i gave the whole history because i've been very ill like this for 6 years now after being healthy."</li><li>'no baseline medical information included, so the following assumes you are healthy.'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy | Precision | Recall | F1     |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.9412   | 0.9412    | 0.9412 | 0.9412 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("never had an issue with reflux before, i eat very healthy....but gave it a go.  ")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 12  | 25.8308 | 60  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| disease   | 30                    |
| lifestyle | 35                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 3786
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0061 | 1    | 0.2143        | -               |
| 0.3067 | 50   | 0.2243        | -               |
| 0.6135 | 100  | 0.0812        | -               |
| 0.9202 | 150  | 0.0019        | -               |
| 1.2270 | 200  | 0.0003        | -               |
| 1.5337 | 250  | 0.0002        | -               |
| 1.8405 | 300  | 0.0002        | -               |
| 2.1472 | 350  | 0.0001        | -               |
| 2.4540 | 400  | 0.0001        | -               |
| 2.7607 | 450  | 0.0001        | -               |
| 3.0675 | 500  | 0.0001        | -               |
| 3.3742 | 550  | 0.0001        | -               |
| 3.6810 | 600  | 0.0001        | -               |
| 3.9877 | 650  | 0.0001        | -               |
| 4.2945 | 700  | 0.0001        | -               |
| 4.6012 | 750  | 0.0001        | -               |
| 4.9080 | 800  | 0.0001        | -               |
| 5.2147 | 850  | 0.0001        | -               |
| 5.5215 | 900  | 0.0001        | -               |
| 5.8282 | 950  | 0.0001        | -               |
| 6.1350 | 1000 | 0.0           | -               |
| 6.4417 | 1050 | 0.0           | -               |
| 6.7485 | 1100 | 0.0           | -               |
| 7.0552 | 1150 | 0.0           | -               |
| 7.3620 | 1200 | 0.0           | -               |
| 7.6687 | 1250 | 0.0           | -               |
| 7.9755 | 1300 | 0.0           | -               |
| 8.2822 | 1350 | 0.0           | -               |
| 8.5890 | 1400 | 0.0           | -               |
| 8.8957 | 1450 | 0.0           | -               |
| 9.2025 | 1500 | 0.0           | -               |
| 9.5092 | 1550 | 0.0           | -               |
| 9.8160 | 1600 | 0.0           | -               |

### Framework Versions
- Python: 3.11.7
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->