| |
| import argparse |
| import functools |
| import re |
| import string |
| import unidecode |
| from typing import Dict |
|
|
| from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric |
|
|
| from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline |
|
|
|
|
| def log_results(result: Dataset, args: Dict[str, str]): |
| """DO NOT CHANGE. This function computes and logs the result metrics.""" |
|
|
| log_outputs = args.log_outputs |
| dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
| |
| wer = load_metric("wer") |
| cer = load_metric("cer") |
|
|
| |
| wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
| cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
| |
| result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
| print(result_str) |
|
|
| with open(f"{dataset_id}_eval_results.txt", "w") as f: |
| f.write(result_str) |
|
|
| |
| if log_outputs is not None: |
| pred_file = f"log_{dataset_id}_predictions.txt" |
| target_file = f"log_{dataset_id}_targets.txt" |
|
|
| with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
| |
| def write_to_file(batch, i): |
| p.write(f"{i}" + "\n") |
| p.write(batch["prediction"] + "\n") |
| t.write(f"{i}" + "\n") |
| t.write(batch["target"] + "\n") |
|
|
| result.map(write_to_file, with_indices=True) |
|
|
|
|
| def normalize_text(text: str) -> str: |
| """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" |
|
|
| chars_to_ignore_regex = f'[{re.escape(string.punctuation)}]' |
|
|
| text = re.sub( |
| chars_to_ignore_regex, |
| "", |
| re.sub("['`´]", "’", |
| re.sub("([og])['`´]", "\g<1>‘", |
| unidecode.unidecode(text).lower() |
| ) |
| ) |
| ) + " " |
|
|
| |
| |
| token_sequences_to_ignore = ["\n\n", "\n", " ", " "] |
|
|
| for t in token_sequences_to_ignore: |
| text = " ".join(text.split(t)) |
|
|
| return text |
|
|
|
|
| def create_vocabulary_from_data( |
| datasets: DatasetDict, |
| word_delimiter_token = None, |
| unk_token = None, |
| pad_token = None, |
| ): |
| |
| def extract_all_chars(batch): |
| all_text = " ".join(batch["target"]) |
| vocab = list(set(all_text)) |
| return {"vocab": [vocab], "all_text": [all_text]} |
|
|
| vocabs = datasets.map( |
| extract_all_chars, |
| batched=True, |
| batch_size=-1, |
| keep_in_memory=True, |
| remove_columns=datasets["test"].column_names, |
| ) |
|
|
|
|
| vocab_dict = {v: k for k, v in enumerate(sorted(vocabs["test"]["vocab"][0]))} |
|
|
| |
| if word_delimiter_token is not None: |
| vocab_dict[word_delimiter_token] = vocab_dict[" "] |
| del vocab_dict[" "] |
|
|
| |
| if unk_token is not None: |
| vocab_dict[unk_token] = len(vocab_dict) |
|
|
| if pad_token is not None: |
| vocab_dict[pad_token] = len(vocab_dict) |
|
|
| return vocab_dict |
|
|
|
|
| def main(args): |
| |
| dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) |
|
|
| |
| |
|
|
| |
| feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) |
| sampling_rate = feature_extractor.sampling_rate |
|
|
| |
| dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
| |
| asr = pipeline("automatic-speech-recognition", model=args.model_id) |
|
|
| |
| def map_to_pred(batch): |
| prediction = asr( |
| batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s |
| ) |
|
|
| batch["prediction"] = prediction["text"] |
| batch["target"] = normalize_text(batch["sentence"]) |
| return batch |
|
|
|
|
| |
| result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
| |
| |
| log_results(result, args) |
|
|
| if args.check_vocab: |
| tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
| unk_token = "[UNK]" |
| pad_token = "[PAD]" |
| word_delimiter_token = "|" |
| raw_datasets = DatasetDict({"test": result}) |
| vocab_dict = create_vocabulary_from_data( |
| raw_datasets, |
| word_delimiter_token=word_delimiter_token, |
| unk_token=unk_token, |
| pad_token=pad_token, |
| ) |
| print(vocab_dict) |
| print("OOV chars:", set(vocab_dict) - set(tokenizer.get_vocab())) |
|
|
| |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser() |
|
|
| parser.add_argument( |
| "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" |
| ) |
| parser.add_argument( |
| "--dataset", |
| type=str, |
| required=True, |
| help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", |
| ) |
| parser.add_argument( |
| "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" |
| ) |
| parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") |
| parser.add_argument( |
| "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." |
| ) |
| parser.add_argument( |
| "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." |
| ) |
| parser.add_argument( |
| "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." |
| ) |
| parser.add_argument( |
| "--check_vocab", action="store_true", help="Verify that normalized target text is within character set" |
| ) |
| args = parser.parse_args() |
|
|
| main(args) |
|
|