---
license: apache-2.0
language:
- en
tags:
- chat
pipeline_tag: text-generation
library_name: transformers
---
# MLX Format and Quantizations for Magnum v4 12b
Converted uncompressed and tested using the `mlx_lm` utility on a 64GiB URAM M1 Max.
See [original model](https://huggingface.co/anthracite-org/magnum-v4-12b) for further details.
# Original model card
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/-UC6YN1Gt3e1FDh8EqyaB.png)
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407).
## Prompting
A typical input would look like this:
```py
[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE[INST] USER MESSAGE[/INST]
```
## SillyTavern templates
Below are Instruct and Context templates for use within SillyTavern.
context template
```yaml
default SillyTavern template works fine
```
instruct template
```yaml
default SillyTavern template works fine
```
## Axolotl config
See axolotl config
```yaml
base_model: mistralai/Mistral-Nemo-Instruct-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: anthracite-org/magnum-v4-12b-r2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system
type: custommistralv3tekken
- path: anthracite-org/nopm_claude_writing_fixed
type: custommistralv3tekken
- path: anthracite-org/kalo_opus_misc_240827_no_system
type: custommistralv3tekken
- path: anthracite-org/kalo_misc_part2_no_system
type: custommistralv3tekken
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-12b-data
val_set_size: 0.0
output_dir: /workspace/data/12b-fft-out
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 12b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-attempt-01
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token:
```
## Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
## Datasets
- [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system)
- [anthracite-org/kalo-opus-instruct-3k-filtered-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-3k-filtered-no-system)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
- [anthracite-org/kalo_opus_misc_240827_no_system](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827_no_system)
- [anthracite-org/kalo_misc_part2_no_system](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2_no_system)
## Training
The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.
[](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
...