--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy model-index: - name: whisper-tiny-ft-balbus results: - task: name: Audio Classification type: audio-classification dataset: name: Balbus dataset type: balbus-classifier metrics: - name: Accuracy type: accuracy value: 0.955 --- # whisper-tiny-ft-balbus This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Balbus dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3438 - Accuracy: 0.955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0028 | 1.0 | 900 | 0.5075 | 0.895 | | 0.717 | 2.0 | 1800 | 0.5615 | 0.915 | | 0.0009 | 3.0 | 2700 | 0.5231 | 0.905 | | 0.0002 | 4.0 | 3600 | 0.2390 | 0.95 | | 0.0 | 5.0 | 4500 | 0.4682 | 0.945 | | 0.0 | 6.0 | 5400 | 0.3438 | 0.955 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0