Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,801 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: modified-mit
|
4 |
+
library_name: transformers
|
5 |
+
---
|
6 |
+
<div align="center">
|
7 |
+
<picture>
|
8 |
+
<img src="figures/kimi-logo.png" width="30%" alt="Kimi K2: Open Agentic Intellignece">
|
9 |
+
</picture>
|
10 |
+
</div>
|
11 |
+
|
12 |
+
<hr>
|
13 |
+
|
14 |
+
<div align="center" style="line-height:1">
|
15 |
+
<a href="https://www.kimi.com" target="_blank"><img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a>
|
16 |
+
<a href="https://github.com/moonshotai/Kimi-K2"><img alt="github" src="https://img.shields.io/badge/🤖%20Github-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a>
|
17 |
+
<a href="https://www.moonshot.ai" target="_blank"><img alt="Homepage" src="https://img.shields.io/badge/Homepage-Moonshot%20AI-white?logo=Kimi&logoColor=white"/></a>
|
18 |
+
</div>
|
19 |
+
|
20 |
+
<div align="center" style="line-height: 1;">
|
21 |
+
<a href="https://huggingface.co/moonshotai" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Moonshot%20AI-ffc107?color=ffc107&logoColor=white"/></a>
|
22 |
+
<a href="https://twitter.com/kimi_moonshot" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-Kimi.ai-white?logo=x&logoColor=white"/></a>
|
23 |
+
<a href="https://discord.gg/TYU2fdJykW" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-Kimi.ai-white?logo=discord&logoColor=white"/></a>
|
24 |
+
</div>
|
25 |
+
|
26 |
+
<div align="center" style="line-height: 1;">
|
27 |
+
<a href="https://github.com/moonshotai/Kimi-K2/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Modified_MIT-f5de53?&color=f5de53"/></a>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<p align="center">
|
31 |
+
<b>📰 <a href="https://moonshotai.github.io/Kimi-K2/">Tech Blog</a></b> | <b>📄 Paper Link (coming soon)</b>
|
32 |
+
</p>
|
33 |
+
|
34 |
+
## 0. Changelog
|
35 |
+
|
36 |
+
### 2025.7.15
|
37 |
+
- We have updated our tokenizer implementation. Now special tokens like `[EOS]` can be encoded to their token ids.
|
38 |
+
- We fixed a bug in the chat template that was breaking multi-turn tool calls.
|
39 |
+
|
40 |
+
## 1. Model Introduction
|
41 |
+
|
42 |
+
Kimi K2 is a state-of-the-art mixture-of-experts (MoE) language model with 32 billion activated parameters and 1 trillion total parameters. Trained with the Muon optimizer, Kimi K2 achieves exceptional performance across frontier knowledge, reasoning, and coding tasks while being meticulously optimized for agentic capabilities.
|
43 |
+
|
44 |
+
### Key Features
|
45 |
+
- Large-Scale Training: Pre-trained a 1T parameter MoE model on 15.5T tokens with zero training instability.
|
46 |
+
- MuonClip Optimizer: We apply the Muon optimizer to an unprecedented scale, and develop novel optimization techniques to resolve instabilities while scaling up.
|
47 |
+
- Agentic Intelligence: Specifically designed for tool use, reasoning, and autonomous problem-solving.
|
48 |
+
|
49 |
+
### Model Variants
|
50 |
+
- **Kimi-K2-Base**: The foundation model, a strong start for researchers and builders who want full control for fine-tuning and custom solutions.
|
51 |
+
- **Kimi-K2-Instruct**: The post-trained model best for drop-in, general-purpose chat and agentic experiences. It is a reflex-grade model without long thinking.
|
52 |
+
|
53 |
+
<div align="center">
|
54 |
+
<picture>
|
55 |
+
<img src="figures/banner.png" width="80%" alt="Evaluation Results">
|
56 |
+
</picture>
|
57 |
+
</div>
|
58 |
+
|
59 |
+
## 2. Model Summary
|
60 |
+
|
61 |
+
<div align="center">
|
62 |
+
|
63 |
+
|
64 |
+
| | |
|
65 |
+
|:---:|:---:|
|
66 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
67 |
+
| **Total Parameters** | 1T |
|
68 |
+
| **Activated Parameters** | 32B |
|
69 |
+
| **Number of Layers** (Dense layer included) | 61 |
|
70 |
+
| **Number of Dense Layers** | 1 |
|
71 |
+
| **Attention Hidden Dimension** | 7168 |
|
72 |
+
| **MoE Hidden Dimension** (per Expert) | 2048 |
|
73 |
+
| **Number of Attention Heads** | 64 |
|
74 |
+
| **Number of Experts** | 384 |
|
75 |
+
| **Selected Experts per Token** | 8 |
|
76 |
+
| **Number of Shared Experts** | 1 |
|
77 |
+
| **Vocabulary Size** | 160K |
|
78 |
+
| **Context Length** | 128K |
|
79 |
+
| **Attention Mechanism** | MLA |
|
80 |
+
| **Activation Function** | SwiGLU |
|
81 |
+
</div>
|
82 |
+
|
83 |
+
## 3. Evaluation Results
|
84 |
+
|
85 |
+
#### Instruction model evaluation results
|
86 |
+
|
87 |
+
<div align="center">
|
88 |
+
<table>
|
89 |
+
<thead>
|
90 |
+
<tr>
|
91 |
+
<th align="center">Benchmark</th>
|
92 |
+
<th align="center">Metric</th>
|
93 |
+
<th align="center"><sup>Kimi K2 Instruct</sup></th>
|
94 |
+
<th align="center"><sup>DeepSeek-V3-0324</sup></th>
|
95 |
+
<th align="center"><sup>Qwen3-235B-A22B <br><sup>(non-thinking)</sup></sup></th>
|
96 |
+
<th align="center"><sup>Claude Sonnet 4 <br><sup>(w/o extended thinking)</sup></sup></th>
|
97 |
+
<th align="center"><sup>Claude Opus 4 <br><sup>(w/o extended thinking)</sup></sup></th>
|
98 |
+
<th align="center"><sup>GPT-4.1</sup></th>
|
99 |
+
<th align="center"><sup>Gemini 2.5 Flash <br> Preview (05-20)</sup></th>
|
100 |
+
</tr>
|
101 |
+
</thead>
|
102 |
+
<tbody>
|
103 |
+
<tr>
|
104 |
+
<td align="center" colspan=9><strong>Coding Tasks</strong></td>
|
105 |
+
</tr>
|
106 |
+
<tr>
|
107 |
+
<td align="center">LiveCodeBench v6<br><sup>(Aug 24 - May 25)</sup></td>
|
108 |
+
<td align="center">Pass@1</td>
|
109 |
+
<td align="center"><strong>53.7</strong></td>
|
110 |
+
<td align="center">46.9</td>
|
111 |
+
<td align="center">37.0</td>
|
112 |
+
<td align="center">48.5</td>
|
113 |
+
<td align="center">47.4</td>
|
114 |
+
<td align="center">44.7</td>
|
115 |
+
<td align="center">44.7</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td align="center">OJBench</td>
|
119 |
+
<td align="center">Pass@1</td>
|
120 |
+
<td align="center"><strong>27.1</strong></td>
|
121 |
+
<td align="center">24.0</td>
|
122 |
+
<td align="center">11.3</td>
|
123 |
+
<td align="center">15.3</td>
|
124 |
+
<td align="center">19.6</td>
|
125 |
+
<td align="center">19.5</td>
|
126 |
+
<td align="center">19.5</td>
|
127 |
+
</tr>
|
128 |
+
|
129 |
+
<tr>
|
130 |
+
<td align="center">MultiPL-E</td>
|
131 |
+
<td align="center">Pass@1</td>
|
132 |
+
<td align="center"><ins><strong>85.7</strong></ins></td>
|
133 |
+
<td align="center">83.1</td>
|
134 |
+
<td align="center">78.2</td>
|
135 |
+
<td align="center">88.6</td>
|
136 |
+
<td align="center"><strong>89.6</strong></td>
|
137 |
+
<td align="center">86.7</td>
|
138 |
+
<td align="center">85.6</td>
|
139 |
+
</tr>
|
140 |
+
|
141 |
+
<tr>
|
142 |
+
<td align="center">SWE-bench Verified <br/><sup>(Agentless Coding)</sup></td>
|
143 |
+
<td align="center">Single Patch w/o Test (Acc)</td>
|
144 |
+
<td align="center"><ins><strong>51.8</strong></ins></td>
|
145 |
+
<td align="center">36.6</td>
|
146 |
+
<td align="center">39.4</td>
|
147 |
+
<td align="center">50.2</td>
|
148 |
+
<td align="center"><strong>53.0</strong></td>
|
149 |
+
<td align="center">40.8</td>
|
150 |
+
<td align="center">32.6</td>
|
151 |
+
</tr>
|
152 |
+
|
153 |
+
<tr>
|
154 |
+
<td align="center" rowspan="2">SWE-bench Verified <br/> <sup>(Agentic Coding)</sup></td>
|
155 |
+
<td align="center">Single Attempt (Acc)</td>
|
156 |
+
<td align="center"><ins><strong>65.8</strong></ins></td>
|
157 |
+
<td align="center">38.8</td>
|
158 |
+
<td align="center">34.4</td>
|
159 |
+
<td align="center"><strong>72.7</strong><sup>*</sup></td>
|
160 |
+
<td align="center">72.5<sup>*</sup></td>
|
161 |
+
<td align="center">54.6</td>
|
162 |
+
<td align="center">—</td>
|
163 |
+
</tr>
|
164 |
+
|
165 |
+
<tr>
|
166 |
+
<!--<td align="center">(Agentic Coding)</td>-->
|
167 |
+
<td align="center">Multiple Attempts (Acc)</td>
|
168 |
+
<td align="center"><ins><strong>71.6</strong></ins></td>
|
169 |
+
<td align="center">—</td>
|
170 |
+
<td align="center">—</td>
|
171 |
+
<td align="center"><strong>80.2</strong></td>
|
172 |
+
<td align="center">79.4<sup>*</sup></td>
|
173 |
+
<td align="center">—</td>
|
174 |
+
<td align="center">—</td>
|
175 |
+
</tr>
|
176 |
+
|
177 |
+
<tr>
|
178 |
+
<td align="center">SWE-bench Multilingual<br /> <sup>(Agentic Coding)</sup></td>
|
179 |
+
<td align="center">Single Attempt (Acc)</td>
|
180 |
+
<td align="center"><ins><strong>47.3</strong> </ins></td>
|
181 |
+
<td align="center">25.8</td>
|
182 |
+
<td align="center">20.9</td>
|
183 |
+
<td align="center"><strong>51.0</strong></td>
|
184 |
+
<td align="center">—</td>
|
185 |
+
<td align="center">31.5</td>
|
186 |
+
<td align="center">—</td>
|
187 |
+
</tr>
|
188 |
+
|
189 |
+
<tr>
|
190 |
+
<td align="center" rowspan="2">TerminalBench</td>
|
191 |
+
<td align="center">Inhouse Framework (Acc)</td>
|
192 |
+
<td align="center"><ins><strong>30.0</strong></ins></td>
|
193 |
+
<td align="center">—</td>
|
194 |
+
<td align="center">—</td>
|
195 |
+
<td align="center">35.5</td>
|
196 |
+
<td align="center"><strong>43.2</strong></td>
|
197 |
+
<td align="center">8.3</td>
|
198 |
+
<td align="center">—</td>
|
199 |
+
</tr>
|
200 |
+
|
201 |
+
<tr>
|
202 |
+
<!--<td align="center">TerminalBench</td>-->
|
203 |
+
<td align="center">Terminus (Acc)</td>
|
204 |
+
<td align="center"><ins><strong>25.0</strong> </ins></td>
|
205 |
+
<td align="center">16.3</td>
|
206 |
+
<td align="center">6.6</td>
|
207 |
+
<td align="center">—</td>
|
208 |
+
<td align="center">—</td>
|
209 |
+
<td align="center"><strong>30.3</strong></td>
|
210 |
+
<td align="center">16.8</td>
|
211 |
+
</tr>
|
212 |
+
<tr>
|
213 |
+
<td align="center">Aider-Polyglot</td>
|
214 |
+
<td align="center">Acc</td>
|
215 |
+
<td align="center">60.0</td>
|
216 |
+
<td align="center">55.1</td>
|
217 |
+
<td align="center"><ins><strong>61.8</strong></ins></td>
|
218 |
+
<td align="center">56.4</td>
|
219 |
+
<td align="center"><strong>70.7</strong></td>
|
220 |
+
<td align="center">52.4</td>
|
221 |
+
<td align="center">44.0</td>
|
222 |
+
</tr>
|
223 |
+
<tr>
|
224 |
+
<td align="center" colspan=9><strong>Tool Use Tasks</strong></td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td align="center">Tau2 retail</td>
|
228 |
+
<td align="center">Avg@4</td>
|
229 |
+
<td align="center"><ins><strong>70.6</strong></ins></td>
|
230 |
+
<td align="center">69.1</td>
|
231 |
+
<td align="center">57.0</td>
|
232 |
+
<td align="center">75.0</td>
|
233 |
+
<td align="center"><strong>81.8</strong></td>
|
234 |
+
<td align="center">74.8</td>
|
235 |
+
<td align="center">64.3</td>
|
236 |
+
</tr>
|
237 |
+
<tr>
|
238 |
+
<td align="center">Tau2 airline</td>
|
239 |
+
<td align="center">Avg@4</td>
|
240 |
+
<td align="center"><ins><strong>56.5</strong></ins></td>
|
241 |
+
<td align="center">39.0</td>
|
242 |
+
<td align="center">26.5</td>
|
243 |
+
<td align="center">55.5</td>
|
244 |
+
<td align="center"><strong>60.0</strong></td>
|
245 |
+
<td align="center">54.5</td>
|
246 |
+
<td align="center">42.5</td>
|
247 |
+
</tr>
|
248 |
+
<tr>
|
249 |
+
<td align="center">Tau2 telecom</td>
|
250 |
+
<td align="center">Avg@4</td>
|
251 |
+
<td align="center"><strong>65.8</strong></td>
|
252 |
+
<td align="center">32.5</td>
|
253 |
+
<td align="center">22.1</td>
|
254 |
+
<td align="center">45.2</td>
|
255 |
+
<td align="center">57.0</td>
|
256 |
+
<td align="center">38.6</td>
|
257 |
+
<td align="center">16.9</td>
|
258 |
+
</tr>
|
259 |
+
<tr>
|
260 |
+
<td align="center">AceBench</td>
|
261 |
+
<td align="center">Acc</td>
|
262 |
+
<td align="center"><ins><strong>76.5</strong></ins></td>
|
263 |
+
<td align="center">72.7</td>
|
264 |
+
<td align="center">70.5</td>
|
265 |
+
<td align="center">76.2</td>
|
266 |
+
<td align="center">75.6</td>
|
267 |
+
<td align="center"><strong>80.1</strong></td>
|
268 |
+
<td align="center">74.5</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td align="center" colspan=9><strong>Math & STEM Tasks</strong></td>
|
272 |
+
</tr>
|
273 |
+
<tr>
|
274 |
+
<td align="center">AIME 2024</td>
|
275 |
+
<td align="center">Avg@64</td>
|
276 |
+
<td align="center"><strong>69.6</strong></td>
|
277 |
+
<td align="center">59.4<sup>*</sup></td>
|
278 |
+
<td align="center">40.1<sup>*</sup></td>
|
279 |
+
<td align="center">43.4</td>
|
280 |
+
<td align="center">48.2</td>
|
281 |
+
<td align="center">46.5</td>
|
282 |
+
<td align="center">61.3</td>
|
283 |
+
</tr>
|
284 |
+
<tr>
|
285 |
+
<td align="center">AIME 2025</td>
|
286 |
+
<td align="center">Avg@64</td>
|
287 |
+
<td align="center"><strong>49.5</strong></td>
|
288 |
+
<td align="center">46.7</td>
|
289 |
+
<td align="center">24.7<sup>*</sup></td>
|
290 |
+
<td align="center">33.1<sup>*</sup></td>
|
291 |
+
<td align="center">33.9<sup>*</sup></td>
|
292 |
+
<td align="center">37.0</td>
|
293 |
+
<td align="center">46.6</td>
|
294 |
+
</tr>
|
295 |
+
<tr>
|
296 |
+
<td align="center">MATH-500</td>
|
297 |
+
<td align="center">Acc</td>
|
298 |
+
<td align="center"><strong>97.4</strong></td>
|
299 |
+
<td align="center">94.0<sup>*</sup></td>
|
300 |
+
<td align="center">91.2<sup>*</sup></td>
|
301 |
+
<td align="center">94.0</td>
|
302 |
+
<td align="center">94.4</td>
|
303 |
+
<td align="center">92.4</td>
|
304 |
+
<td align="center">95.4</td>
|
305 |
+
</tr>
|
306 |
+
<tr>
|
307 |
+
<td align="center">HMMT 2025</td>
|
308 |
+
<td align="center">Avg@32</td>
|
309 |
+
<td align="center"><strong>38.8</strong></td>
|
310 |
+
<td align="center">27.5</td>
|
311 |
+
<td align="center">11.9</td>
|
312 |
+
<td align="center">15.9</td>
|
313 |
+
<td align="center">15.9</td>
|
314 |
+
<td align="center">19.4</td>
|
315 |
+
<td align="center">34.7</td>
|
316 |
+
</tr>
|
317 |
+
<tr>
|
318 |
+
<td align="center">CNMO 2024</td>
|
319 |
+
<td align="center">Avg@16</td>
|
320 |
+
<td align="center">74.3</td>
|
321 |
+
<td align="center"><ins><strong>74.7</strong></ins></td>
|
322 |
+
<td align="center">48.6</td>
|
323 |
+
<td align="center">60.4</td>
|
324 |
+
<td align="center">57.6</td>
|
325 |
+
<td align="center">56.6</td>
|
326 |
+
<td align="center"><strong>75.0</strong></td>
|
327 |
+
</tr>
|
328 |
+
<tr>
|
329 |
+
<td align="center">PolyMath-en</td>
|
330 |
+
<td align="center">Avg@4</td>
|
331 |
+
<td align="center"><strong>65.1</strong></td>
|
332 |
+
<td align="center">59.5</td>
|
333 |
+
<td align="center">51.9</td>
|
334 |
+
<td align="center">52.8</td>
|
335 |
+
<td align="center">49.8</td>
|
336 |
+
<td align="center">54.0</td>
|
337 |
+
<td align="center">49.9</td>
|
338 |
+
</tr>
|
339 |
+
|
340 |
+
<tr>
|
341 |
+
<td align="center">ZebraLogic</td>
|
342 |
+
<td align="center">Acc</td>
|
343 |
+
<td align="center"><strong>89.0</strong></td>
|
344 |
+
<td align="center">84.0</td>
|
345 |
+
<td align="center">37.7<sup>*</sup></td>
|
346 |
+
<td align="center">73.7</td>
|
347 |
+
<td align="center">59.3</td>
|
348 |
+
<td align="center">58.5</td>
|
349 |
+
<td align="center">57.9</td>
|
350 |
+
</tr>
|
351 |
+
|
352 |
+
<tr>
|
353 |
+
<td align="center">AutoLogi</td>
|
354 |
+
<td align="center">Acc</td>
|
355 |
+
<td align="center"><ins><strong>89.5</strong></ins></td>
|
356 |
+
<td align="center">88.9</td>
|
357 |
+
<td align="center">83.3</td>
|
358 |
+
<td align="center"><strong>89.8</strong></td>
|
359 |
+
<td align="center">86.1</td>
|
360 |
+
<td align="center">88.2</td>
|
361 |
+
<td align="center">84.1</td>
|
362 |
+
</tr>
|
363 |
+
|
364 |
+
<tr>
|
365 |
+
<td align="center">GPQA-Diamond</td>
|
366 |
+
<td align="center">Avg@8</td>
|
367 |
+
<td align="center"><strong>75.1</strong></td>
|
368 |
+
<td align="center">68.4<sup>*</sup></td>
|
369 |
+
<td align="center">62.9<sup>*</sup></td>
|
370 |
+
<td align="center">70.0<sup>*</sup></td>
|
371 |
+
<td align="center">74.9<sup>*</sup></td>
|
372 |
+
<td align="center">66.3</td>
|
373 |
+
<td align="center">68.2</td>
|
374 |
+
</tr>
|
375 |
+
|
376 |
+
<tr>
|
377 |
+
<td align="center">SuperGPQA</td>
|
378 |
+
<td align="center">Acc</td>
|
379 |
+
<td align="center"><strong>57.2</strong></td>
|
380 |
+
<td align="center">53.7</td>
|
381 |
+
<td align="center">50.2</td>
|
382 |
+
<td align="center">55.7</td>
|
383 |
+
<td align="center">56.5</td>
|
384 |
+
<td align="center">50.8</td>
|
385 |
+
<td align="center">49.6</td>
|
386 |
+
</tr>
|
387 |
+
|
388 |
+
<tr>
|
389 |
+
<td align="center">Humanity's Last Exam<br><sup>(Text Only)</sup></td>
|
390 |
+
<td align="center">-</td>
|
391 |
+
<td align="center">4.7</td>
|
392 |
+
<td align="center">5.2</td>
|
393 |
+
<td align="center"><ins><strong>5.7</strong></ins></td>
|
394 |
+
<td align="center">5.8</td>
|
395 |
+
<td align="center"><strong>7.1</strong></td>
|
396 |
+
<td align="center">3.7</td>
|
397 |
+
<td align="center">5.6</td>
|
398 |
+
</tr>
|
399 |
+
|
400 |
+
<tr>
|
401 |
+
<td align="center" colspan=9><strong>General Tasks</strong></td>
|
402 |
+
</tr>
|
403 |
+
|
404 |
+
<tr>
|
405 |
+
<td align="center">MMLU</td>
|
406 |
+
<td align="center">EM</td>
|
407 |
+
<td align="center"><ins><strong>89.5</strong></ins></td>
|
408 |
+
<td align="center">89.4</td>
|
409 |
+
<td align="center">87.0</td>
|
410 |
+
<td align="center">91.5</td>
|
411 |
+
<td align="center"><strong>92.9</strong></td>
|
412 |
+
<td align="center">90.4</td>
|
413 |
+
<td align="center">90.1</td>
|
414 |
+
</tr>
|
415 |
+
|
416 |
+
<tr>
|
417 |
+
<td align="center">MMLU-Redux</td>
|
418 |
+
<td align="center">EM</td>
|
419 |
+
<td align="center"><ins><strong>92.7</strong></ins></td>
|
420 |
+
<td align="center">90.5</td>
|
421 |
+
<td align="center">89.2</td>
|
422 |
+
<td align="center">93.6</td>
|
423 |
+
<td align="center"><strong>94.2</strong></td>
|
424 |
+
<td align="center">92.4</td>
|
425 |
+
<td align="center">90.6</td>
|
426 |
+
</tr>
|
427 |
+
|
428 |
+
<tr>
|
429 |
+
<td align="center">MMLU-Pro</td>
|
430 |
+
<td align="center">EM</td>
|
431 |
+
<td align="center">81.1</td>
|
432 |
+
<td align="center"><ins><strong>81.2</strong></ins><sup>*</sup></td>
|
433 |
+
<td align="center">77.3</td>
|
434 |
+
<td align="center">83.7</td>
|
435 |
+
<td align="center"><strong>86.6</strong></td>
|
436 |
+
<td align="center">81.8</td>
|
437 |
+
<td align="center">79.4</td>
|
438 |
+
</tr>
|
439 |
+
|
440 |
+
<tr>
|
441 |
+
<td align="center">IFEval</td>
|
442 |
+
<td align="center">Prompt Strict</td>
|
443 |
+
<td align="center"><strong>89.8</strong></td>
|
444 |
+
<td align="center">81.1</td>
|
445 |
+
<td align="center">83.2<sup>*</sup></td>
|
446 |
+
<td align="center">87.6</td>
|
447 |
+
<td align="center">87.4</td>
|
448 |
+
<td align="center">88.0</td>
|
449 |
+
<td align="center">84.3</td>
|
450 |
+
</tr>
|
451 |
+
|
452 |
+
<tr>
|
453 |
+
<td align="center">Multi-Challenge</td>
|
454 |
+
<td align="center">Acc</td>
|
455 |
+
<td align="center"><strong>54.1</strong></td>
|
456 |
+
<td align="center">31.4</td>
|
457 |
+
<td align="center">34.0</td>
|
458 |
+
<td align="center">46.8</td>
|
459 |
+
<td align="center">49.0</td>
|
460 |
+
<td align="center">36.4</td>
|
461 |
+
<td align="center">39.5</td>
|
462 |
+
</tr>
|
463 |
+
|
464 |
+
<tr>
|
465 |
+
<td align="center">SimpleQA</td>
|
466 |
+
<td align="center">Correct</td>
|
467 |
+
<td align="center"><ins><strong>31.0</strong></ins></td>
|
468 |
+
<td align="center">27.7</td>
|
469 |
+
<td align="center">13.2</td>
|
470 |
+
<td align="center">15.9</td>
|
471 |
+
<td align="center">22.8</td>
|
472 |
+
<td align="center"><strong>42.3</strong></td>
|
473 |
+
<td align="center">23.3</td>
|
474 |
+
</tr>
|
475 |
+
|
476 |
+
<tr>
|
477 |
+
<td align="center">Livebench</td>
|
478 |
+
<td align="center">Pass@1</td>
|
479 |
+
<td align="center"><strong>76.4</strong></td>
|
480 |
+
<td align="center">72.4</td>
|
481 |
+
<td align="center">67.6</td>
|
482 |
+
<td align="center">74.8</td>
|
483 |
+
<td align="center">74.6</td>
|
484 |
+
<td align="center">69.8</td>
|
485 |
+
<td align="center">67.8</td>
|
486 |
+
</tr>
|
487 |
+
</tbody>
|
488 |
+
</table>
|
489 |
+
</div>
|
490 |
+
<sup>
|
491 |
+
• Bold denotes global SOTA, and underlined denotes open-source SOTA.
|
492 |
+
</sup><br/><sup>
|
493 |
+
• Data points marked with * are taken directly from the model's tech report or blog.
|
494 |
+
</sup><br/><sup>
|
495 |
+
• All metrics, except for SWE-bench Verified (Agentless), are evaluated with an 8k output token length. SWE-bench Verified (Agentless) is limited to a 16k output token length.
|
496 |
+
</sup><br/><sup>
|
497 |
+
• Kimi K2 achieves 65.8% pass@1 on the SWE-bench Verified tests with bash/editor tools (single-attempt patches, no test-time compute). It also achieves a 47.3% pass@1 on the SWE-bench Multilingual tests under the same conditions. Additionally, we report results on SWE-bench Verified tests (71.6%) that leverage parallel test-time compute by sampling multiple sequences and selecting the single best via an internal scoring model.
|
498 |
+
</sup><br/><sup>
|
499 |
+
• To ensure the stability of the evaluation, we employed avg@k on the AIME, HMMT, CNMO, PolyMath-en, GPQA-Diamond, EvalPlus, Tau2.
|
500 |
+
</sup><br/><sup>
|
501 |
+
• Some data points have been omitted due to prohibitively expensive evaluation costs.
|
502 |
+
</sup>
|
503 |
+
|
504 |
+
---
|
505 |
+
|
506 |
+
#### Base model evaluation results
|
507 |
+
|
508 |
+
<div align="center">
|
509 |
+
|
510 |
+
<table>
|
511 |
+
<thead>
|
512 |
+
<tr>
|
513 |
+
<th align="center">Benchmark</th>
|
514 |
+
<th align="center">Metric</th>
|
515 |
+
<th align="center">Shot</th>
|
516 |
+
<th align="center">Kimi K2 Base</th>
|
517 |
+
<th align="center">Deepseek-V3-Base</th>
|
518 |
+
<th align="center">Qwen2.5-72B</th>
|
519 |
+
<th align="center">Llama 4 Maverick</th>
|
520 |
+
</tr>
|
521 |
+
</thead>
|
522 |
+
<tbody>
|
523 |
+
<tr>
|
524 |
+
<td align="center" colspan="7"><strong>General Tasks</strong></td>
|
525 |
+
</tr>
|
526 |
+
<tr>
|
527 |
+
<td align="center">MMLU</td>
|
528 |
+
<td align="center">EM</td>
|
529 |
+
<td align="center">5-shot</td>
|
530 |
+
<td align="center"><strong>87.8</strong></td>
|
531 |
+
<td align="center">87.1</td>
|
532 |
+
<td align="center">86.1</td>
|
533 |
+
<td align="center">84.9</td>
|
534 |
+
</tr>
|
535 |
+
<tr>
|
536 |
+
<td align="center">MMLU-pro</td>
|
537 |
+
<td align="center">EM</td>
|
538 |
+
<td align="center">5-shot</td>
|
539 |
+
<td align="center"><strong>69.2</strong></td>
|
540 |
+
<td align="center">60.6</td>
|
541 |
+
<td align="center">62.8</td>
|
542 |
+
<td align="center">63.5</td>
|
543 |
+
</tr>
|
544 |
+
<tr>
|
545 |
+
<td align="center">MMLU-redux-2.0</td>
|
546 |
+
<td align="center">EM</td>
|
547 |
+
<td align="center">5-shot</td>
|
548 |
+
<td align="center"><strong>90.2</strong></td>
|
549 |
+
<td align="center">89.5</td>
|
550 |
+
<td align="center">87.8</td>
|
551 |
+
<td align="center">88.2</td>
|
552 |
+
</tr>
|
553 |
+
<tr>
|
554 |
+
<td align="center">SimpleQA</td>
|
555 |
+
<td align="center">Correct</td>
|
556 |
+
<td align="center">5-shot</td>
|
557 |
+
<td align="center"><strong>35.3</strong></td>
|
558 |
+
<td align="center">26.5</td>
|
559 |
+
<td align="center">10.3</td>
|
560 |
+
<td align="center">23.7</td>
|
561 |
+
</tr>
|
562 |
+
<tr>
|
563 |
+
<td align="center">TriviaQA</td>
|
564 |
+
<td align="center">EM</td>
|
565 |
+
<td align="center">5-shot</td>
|
566 |
+
<td align="center"><strong>85.1</strong></td>
|
567 |
+
<td align="center">84.1</td>
|
568 |
+
<td align="center">76.0</td>
|
569 |
+
<td align="center">79.3</td>
|
570 |
+
</tr>
|
571 |
+
<tr>
|
572 |
+
<td align="center">GPQA-Diamond</td>
|
573 |
+
<td align="center">Avg@8</td>
|
574 |
+
<td align="center">5-shot</td>
|
575 |
+
<td align="center">48.1</td>
|
576 |
+
<td align="center"><strong>50.5</strong></td>
|
577 |
+
<td align="center">40.8</td>
|
578 |
+
<td align="center">49.4</td>
|
579 |
+
</tr>
|
580 |
+
<tr>
|
581 |
+
<td align="center">SuperGPQA</td>
|
582 |
+
<td align="center">EM</td>
|
583 |
+
<td align="center">5-shot</td>
|
584 |
+
<td align="center"><strong>44.7</strong></td>
|
585 |
+
<td align="center">39.2</td>
|
586 |
+
<td align="center">34.2</td>
|
587 |
+
<td align="center">38.8</td>
|
588 |
+
</tr>
|
589 |
+
<tr>
|
590 |
+
<td align="center" colspan="7"><strong>Coding Tasks</strong></td>
|
591 |
+
</tr>
|
592 |
+
<tr>
|
593 |
+
<td align="center">LiveCodeBench v6</td>
|
594 |
+
<td align="center">Pass@1</td>
|
595 |
+
<td align="center">1-shot</td>
|
596 |
+
<td align="center"><strong>26.3</strong></td>
|
597 |
+
<td align="center">22.9</td>
|
598 |
+
<td align="center">21.1</td>
|
599 |
+
<td align="center">25.1</td>
|
600 |
+
</tr>
|
601 |
+
<tr>
|
602 |
+
<td align="center">EvalPlus</td>
|
603 |
+
<td align="center">Pass@1</td>
|
604 |
+
<td align="center">-</td>
|
605 |
+
<td align="center"><strong>80.3</strong></td>
|
606 |
+
<td align="center">65.6</td>
|
607 |
+
<td align="center">66.0</td>
|
608 |
+
<td align="center">65.5</td>
|
609 |
+
</tr>
|
610 |
+
<tr>
|
611 |
+
<td align="center" colspan="7"><strong>Mathematics Tasks</strong></td>
|
612 |
+
</tr>
|
613 |
+
<tr>
|
614 |
+
<td align="center">MATH</td>
|
615 |
+
<td align="center">EM</td>
|
616 |
+
<td align="center">4-shot</td>
|
617 |
+
<td align="center"><strong>70.2</strong></td>
|
618 |
+
<td align="center">60.1</td>
|
619 |
+
<td align="center">61.0</td>
|
620 |
+
<td align="center">63.0</td>
|
621 |
+
</tr>
|
622 |
+
<tr>
|
623 |
+
<td align="center">GSM8k</td>
|
624 |
+
<td align="center">EM</td>
|
625 |
+
<td align="center">8-shot</td>
|
626 |
+
<td align="center"><strong>92.1</strong></td>
|
627 |
+
<td align="center">91.7</td>
|
628 |
+
<td align="center">90.4</td>
|
629 |
+
<td align="center">86.3</td>
|
630 |
+
</tr>
|
631 |
+
<tr>
|
632 |
+
<td align="center" colspan="7"><strong>Chinese Tasks</strong></td>
|
633 |
+
</tr>
|
634 |
+
<tr>
|
635 |
+
<td align="center">C-Eval</td>
|
636 |
+
<td align="center">EM</td>
|
637 |
+
<td align="center">5-shot</td>
|
638 |
+
<td align="center"><strong>92.5</strong></td>
|
639 |
+
<td align="center">90.0</td>
|
640 |
+
<td align="center">90.9</td>
|
641 |
+
<td align="center">80.9</td>
|
642 |
+
</tr>
|
643 |
+
<tr>
|
644 |
+
<td align="center">CSimpleQA</td>
|
645 |
+
<td align="center">Correct</td>
|
646 |
+
<td align="center">5-shot</td>
|
647 |
+
<td align="center"><strong>77.6</strong></td>
|
648 |
+
<td align="center">72.1</td>
|
649 |
+
<td align="center">50.5</td>
|
650 |
+
<td align="center">53.5</td>
|
651 |
+
</tr>
|
652 |
+
</tbody>
|
653 |
+
</table>
|
654 |
+
</div>
|
655 |
+
<sup>
|
656 |
+
• We only evaluate open-source pretrained models in this work. We report results for Qwen2.5-72B because the base checkpoint for Qwen3-235B-A22B was not open-sourced at the time of our study.
|
657 |
+
</sup><br/><sup>
|
658 |
+
• All models are evaluated using the same evaluation protocol.
|
659 |
+
|
660 |
+
</sup>
|
661 |
+
|
662 |
+
|
663 |
+
## 4. Deployment
|
664 |
+
> [!Note]
|
665 |
+
> You can access Kimi K2's API on https://platform.moonshot.ai , we provide OpenAI/Anthropic-compatible API for you.
|
666 |
+
>
|
667 |
+
> The Anthropic-compatible API maps temperature by `real_temperature = request_temperature * 0.6` for better compatible with existing applications.
|
668 |
+
|
669 |
+
Our model checkpoints are stored in the block-fp8 format, you can find it on [Huggingface](https://huggingface.co/moonshotai/Kimi-K2-Instruct).
|
670 |
+
|
671 |
+
Currently, Kimi-K2 is recommended to run on the following inference engines:
|
672 |
+
|
673 |
+
* vLLM
|
674 |
+
* SGLang
|
675 |
+
* KTransformers
|
676 |
+
* TensorRT-LLM
|
677 |
+
|
678 |
+
Deployment examples for vLLM and SGLang can be found in the [Model Deployment Guide](docs/deploy_guidance.md).
|
679 |
+
|
680 |
+
---
|
681 |
+
|
682 |
+
## 5. Model Usage
|
683 |
+
|
684 |
+
### Chat Completion
|
685 |
+
|
686 |
+
Once the local inference service is up, you can interact with it through the chat endpoint:
|
687 |
+
|
688 |
+
```python
|
689 |
+
def simple_chat(client: OpenAI, model_name: str):
|
690 |
+
messages = [
|
691 |
+
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
|
692 |
+
{"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]},
|
693 |
+
]
|
694 |
+
response = client.chat.completions.create(
|
695 |
+
model=model_name,
|
696 |
+
messages=messages,
|
697 |
+
stream=False,
|
698 |
+
temperature=0.6,
|
699 |
+
max_tokens=256
|
700 |
+
)
|
701 |
+
print(response.choices[0].message.content)
|
702 |
+
```
|
703 |
+
|
704 |
+
> [!NOTE]
|
705 |
+
> The recommended temperature for Kimi-K2-Instruct is `temperature = 0.6`.
|
706 |
+
> If no special instructions are required, the system prompt above is a good default.
|
707 |
+
|
708 |
+
---
|
709 |
+
|
710 |
+
### Tool Calling
|
711 |
+
|
712 |
+
Kimi-K2-Instruct has strong tool-calling capabilities.
|
713 |
+
To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.
|
714 |
+
|
715 |
+
The following example demonstrates calling a weather tool end-to-end:
|
716 |
+
|
717 |
+
```python
|
718 |
+
# Your tool implementation
|
719 |
+
def get_weather(city: str) -> dict:
|
720 |
+
return {"weather": "Sunny"}
|
721 |
+
|
722 |
+
# Tool schema definition
|
723 |
+
tools = [{
|
724 |
+
"type": "function",
|
725 |
+
"function": {
|
726 |
+
"name": "get_weather",
|
727 |
+
"description": "Retrieve current weather information. Call this when the user asks about the weather.",
|
728 |
+
"parameters": {
|
729 |
+
"type": "object",
|
730 |
+
"required": ["city"],
|
731 |
+
"properties": {
|
732 |
+
"city": {
|
733 |
+
"type": "string",
|
734 |
+
"description": "Name of the city"
|
735 |
+
}
|
736 |
+
}
|
737 |
+
}
|
738 |
+
}
|
739 |
+
}]
|
740 |
+
|
741 |
+
# Map tool names to their implementations
|
742 |
+
tool_map = {
|
743 |
+
"get_weather": get_weather
|
744 |
+
}
|
745 |
+
|
746 |
+
def tool_call_with_client(client: OpenAI, model_name: str):
|
747 |
+
messages = [
|
748 |
+
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
|
749 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."}
|
750 |
+
]
|
751 |
+
finish_reason = None
|
752 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
753 |
+
completion = client.chat.completions.create(
|
754 |
+
model=model_name,
|
755 |
+
messages=messages,
|
756 |
+
temperature=0.6,
|
757 |
+
tools=tools, # tool list defined above
|
758 |
+
tool_choice="auto"
|
759 |
+
)
|
760 |
+
choice = completion.choices[0]
|
761 |
+
finish_reason = choice.finish_reason
|
762 |
+
if finish_reason == "tool_calls":
|
763 |
+
messages.append(choice.message)
|
764 |
+
for tool_call in choice.message.tool_calls:
|
765 |
+
tool_call_name = tool_call.function.name
|
766 |
+
tool_call_arguments = json.loads(tool_call.function.arguments)
|
767 |
+
tool_function = tool_map[tool_call_name]
|
768 |
+
tool_result = tool_function(**tool_call_arguments)
|
769 |
+
print("tool_result:", tool_result)
|
770 |
+
|
771 |
+
messages.append({
|
772 |
+
"role": "tool",
|
773 |
+
"tool_call_id": tool_call.id,
|
774 |
+
"name": tool_call_name,
|
775 |
+
"content": json.dumps(tool_result)
|
776 |
+
})
|
777 |
+
print("-" * 100)
|
778 |
+
print(choice.message.content)
|
779 |
+
```
|
780 |
+
|
781 |
+
The `tool_call_with_client` function implements the pipeline from user query to tool execution.
|
782 |
+
This pipeline requires the inference engine to support Kimi-K2’s native tool-parsing logic.
|
783 |
+
For streaming output and manual tool-parsing, see the [Tool Calling Guide](docs/tool_call_guidance.md).
|
784 |
+
|
785 |
+
---
|
786 |
+
|
787 |
+
## 6. License
|
788 |
+
|
789 |
+
Both the code repository and the model weights are released under the [Modified MIT License](LICENSE).
|
790 |
+
|
791 |
+
---
|
792 |
+
|
793 |
+
## 7. Third Party Notices
|
794 |
+
|
795 |
+
See [THIRD PARTY NOTICES](THIRD_PARTY_NOTICES.md)
|
796 |
+
|
797 |
+
---
|
798 |
+
|
799 |
+
## 7. Contact Us
|
800 |
+
|
801 |
+
If you have any questions, please reach out at [[email protected]](mailto:[email protected]).
|