luka023 commited on
Commit
ee708e2
·
verified ·
1 Parent(s): c488877

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,794 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-large
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:198
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Najčešći tipovi uključuju iznad/ispod 2.5, ukupno golova, i klađenje
31
+ na broj golova u poluvremenima.
32
+ sentences:
33
+ - Koji su najčešći tipovi klađenja na golove?
34
+ - Koje kladionice u Srbiji nude DNB opciju?
35
+ - Šta je hendikep klađenje?
36
+ - source_sentence: Facebook grupe posvećene klađenju omogućavaju korisnicima da dobijaju
37
+ savete i predloge od velikih zajednica korisnika i kladioničara.
38
+ sentences:
39
+ - Šta je limit u klađenju?
40
+ - Kako se koristi Facebook za klađenje?
41
+ - Šta je cash-out opcija u uživo klađenju?
42
+ - source_sentence: Najčešći tipovi uključuju klađenje na konačan ishod, broj gemova,
43
+ broj setova, i klađenje uživo.
44
+ sentences:
45
+ - Koje su prednosti praćenja utakmica uživo?
46
+ - Koji su najčešći tipovi klađenja na tenis?
47
+ - Šta je e-novčanik?
48
+ - source_sentence: Premijum provizija je dodatna naknada koju berze kvota mogu naplatiti
49
+ igračima za specifične usluge ili dobitke.
50
+ sentences:
51
+ - Šta je premijum provizija?
52
+ - Koje su strategije za uspešno uživo klađenje?
53
+ - Kako funkcioniše klađenje na ukupan broj poena timova?
54
+ - source_sentence: '''Super Jenki'' sistem uključuje pet događaja i 26 pojedinačnih
55
+ opklada, takođe poznat kao kanadski sistem.'
56
+ sentences:
57
+ - Šta je 'Super Jenki' sistem klađenja?
58
+ - Šta je procena verovatnoće?
59
+ - Kako klađenje uživo funkcioniše u tenisu?
60
+ model-index:
61
+ - name: SentenceTransformer based on intfloat/multilingual-e5-large
62
+ results:
63
+ - task:
64
+ type: information-retrieval
65
+ name: Information Retrieval
66
+ dataset:
67
+ name: dim 768
68
+ type: dim_768
69
+ metrics:
70
+ - type: cosine_accuracy@1
71
+ value: 0.8260869565217391
72
+ name: Cosine Accuracy@1
73
+ - type: cosine_accuracy@3
74
+ value: 0.9565217391304348
75
+ name: Cosine Accuracy@3
76
+ - type: cosine_accuracy@5
77
+ value: 1.0
78
+ name: Cosine Accuracy@5
79
+ - type: cosine_accuracy@10
80
+ value: 1.0
81
+ name: Cosine Accuracy@10
82
+ - type: cosine_precision@1
83
+ value: 0.8260869565217391
84
+ name: Cosine Precision@1
85
+ - type: cosine_precision@3
86
+ value: 0.31884057971014484
87
+ name: Cosine Precision@3
88
+ - type: cosine_precision@5
89
+ value: 0.20000000000000007
90
+ name: Cosine Precision@5
91
+ - type: cosine_precision@10
92
+ value: 0.10000000000000003
93
+ name: Cosine Precision@10
94
+ - type: cosine_recall@1
95
+ value: 0.8260869565217391
96
+ name: Cosine Recall@1
97
+ - type: cosine_recall@3
98
+ value: 0.9565217391304348
99
+ name: Cosine Recall@3
100
+ - type: cosine_recall@5
101
+ value: 1.0
102
+ name: Cosine Recall@5
103
+ - type: cosine_recall@10
104
+ value: 1.0
105
+ name: Cosine Recall@10
106
+ - type: cosine_ndcg@10
107
+ value: 0.9271072095125116
108
+ name: Cosine Ndcg@10
109
+ - type: cosine_mrr@10
110
+ value: 0.9021739130434783
111
+ name: Cosine Mrr@10
112
+ - type: cosine_map@100
113
+ value: 0.9021739130434783
114
+ name: Cosine Map@100
115
+ - task:
116
+ type: information-retrieval
117
+ name: Information Retrieval
118
+ dataset:
119
+ name: dim 512
120
+ type: dim_512
121
+ metrics:
122
+ - type: cosine_accuracy@1
123
+ value: 0.8695652173913043
124
+ name: Cosine Accuracy@1
125
+ - type: cosine_accuracy@3
126
+ value: 1.0
127
+ name: Cosine Accuracy@3
128
+ - type: cosine_accuracy@5
129
+ value: 1.0
130
+ name: Cosine Accuracy@5
131
+ - type: cosine_accuracy@10
132
+ value: 1.0
133
+ name: Cosine Accuracy@10
134
+ - type: cosine_precision@1
135
+ value: 0.8695652173913043
136
+ name: Cosine Precision@1
137
+ - type: cosine_precision@3
138
+ value: 0.3333333333333332
139
+ name: Cosine Precision@3
140
+ - type: cosine_precision@5
141
+ value: 0.20000000000000007
142
+ name: Cosine Precision@5
143
+ - type: cosine_precision@10
144
+ value: 0.10000000000000003
145
+ name: Cosine Precision@10
146
+ - type: cosine_recall@1
147
+ value: 0.8695652173913043
148
+ name: Cosine Recall@1
149
+ - type: cosine_recall@3
150
+ value: 1.0
151
+ name: Cosine Recall@3
152
+ - type: cosine_recall@5
153
+ value: 1.0
154
+ name: Cosine Recall@5
155
+ - type: cosine_recall@10
156
+ value: 1.0
157
+ name: Cosine Recall@10
158
+ - type: cosine_ndcg@10
159
+ value: 0.9461678046583877
160
+ name: Cosine Ndcg@10
161
+ - type: cosine_mrr@10
162
+ value: 0.9275362318840579
163
+ name: Cosine Mrr@10
164
+ - type: cosine_map@100
165
+ value: 0.9275362318840579
166
+ name: Cosine Map@100
167
+ - task:
168
+ type: information-retrieval
169
+ name: Information Retrieval
170
+ dataset:
171
+ name: dim 256
172
+ type: dim_256
173
+ metrics:
174
+ - type: cosine_accuracy@1
175
+ value: 0.8260869565217391
176
+ name: Cosine Accuracy@1
177
+ - type: cosine_accuracy@3
178
+ value: 1.0
179
+ name: Cosine Accuracy@3
180
+ - type: cosine_accuracy@5
181
+ value: 1.0
182
+ name: Cosine Accuracy@5
183
+ - type: cosine_accuracy@10
184
+ value: 1.0
185
+ name: Cosine Accuracy@10
186
+ - type: cosine_precision@1
187
+ value: 0.8260869565217391
188
+ name: Cosine Precision@1
189
+ - type: cosine_precision@3
190
+ value: 0.3333333333333332
191
+ name: Cosine Precision@3
192
+ - type: cosine_precision@5
193
+ value: 0.20000000000000007
194
+ name: Cosine Precision@5
195
+ - type: cosine_precision@10
196
+ value: 0.10000000000000003
197
+ name: Cosine Precision@10
198
+ - type: cosine_recall@1
199
+ value: 0.8260869565217391
200
+ name: Cosine Recall@1
201
+ - type: cosine_recall@3
202
+ value: 1.0
203
+ name: Cosine Recall@3
204
+ - type: cosine_recall@5
205
+ value: 1.0
206
+ name: Cosine Recall@5
207
+ - type: cosine_recall@10
208
+ value: 1.0
209
+ name: Cosine Recall@10
210
+ - type: cosine_ndcg@10
211
+ value: 0.9301212722049728
212
+ name: Cosine Ndcg@10
213
+ - type: cosine_mrr@10
214
+ value: 0.9057971014492753
215
+ name: Cosine Mrr@10
216
+ - type: cosine_map@100
217
+ value: 0.9057971014492753
218
+ name: Cosine Map@100
219
+ - task:
220
+ type: information-retrieval
221
+ name: Information Retrieval
222
+ dataset:
223
+ name: dim 128
224
+ type: dim_128
225
+ metrics:
226
+ - type: cosine_accuracy@1
227
+ value: 0.782608695652174
228
+ name: Cosine Accuracy@1
229
+ - type: cosine_accuracy@3
230
+ value: 0.9565217391304348
231
+ name: Cosine Accuracy@3
232
+ - type: cosine_accuracy@5
233
+ value: 1.0
234
+ name: Cosine Accuracy@5
235
+ - type: cosine_accuracy@10
236
+ value: 1.0
237
+ name: Cosine Accuracy@10
238
+ - type: cosine_precision@1
239
+ value: 0.782608695652174
240
+ name: Cosine Precision@1
241
+ - type: cosine_precision@3
242
+ value: 0.31884057971014484
243
+ name: Cosine Precision@3
244
+ - type: cosine_precision@5
245
+ value: 0.20000000000000007
246
+ name: Cosine Precision@5
247
+ - type: cosine_precision@10
248
+ value: 0.10000000000000003
249
+ name: Cosine Precision@10
250
+ - type: cosine_recall@1
251
+ value: 0.782608695652174
252
+ name: Cosine Recall@1
253
+ - type: cosine_recall@3
254
+ value: 0.9565217391304348
255
+ name: Cosine Recall@3
256
+ - type: cosine_recall@5
257
+ value: 1.0
258
+ name: Cosine Recall@5
259
+ - type: cosine_recall@10
260
+ value: 1.0
261
+ name: Cosine Recall@10
262
+ - type: cosine_ndcg@10
263
+ value: 0.9091552965878422
264
+ name: Cosine Ndcg@10
265
+ - type: cosine_mrr@10
266
+ value: 0.8782608695652173
267
+ name: Cosine Mrr@10
268
+ - type: cosine_map@100
269
+ value: 0.8782608695652173
270
+ name: Cosine Map@100
271
+ - task:
272
+ type: information-retrieval
273
+ name: Information Retrieval
274
+ dataset:
275
+ name: dim 64
276
+ type: dim_64
277
+ metrics:
278
+ - type: cosine_accuracy@1
279
+ value: 0.8260869565217391
280
+ name: Cosine Accuracy@1
281
+ - type: cosine_accuracy@3
282
+ value: 0.9565217391304348
283
+ name: Cosine Accuracy@3
284
+ - type: cosine_accuracy@5
285
+ value: 0.9565217391304348
286
+ name: Cosine Accuracy@5
287
+ - type: cosine_accuracy@10
288
+ value: 1.0
289
+ name: Cosine Accuracy@10
290
+ - type: cosine_precision@1
291
+ value: 0.8260869565217391
292
+ name: Cosine Precision@1
293
+ - type: cosine_precision@3
294
+ value: 0.31884057971014484
295
+ name: Cosine Precision@3
296
+ - type: cosine_precision@5
297
+ value: 0.19130434782608702
298
+ name: Cosine Precision@5
299
+ - type: cosine_precision@10
300
+ value: 0.10000000000000003
301
+ name: Cosine Precision@10
302
+ - type: cosine_recall@1
303
+ value: 0.8260869565217391
304
+ name: Cosine Recall@1
305
+ - type: cosine_recall@3
306
+ value: 0.9565217391304348
307
+ name: Cosine Recall@3
308
+ - type: cosine_recall@5
309
+ value: 0.9565217391304348
310
+ name: Cosine Recall@5
311
+ - type: cosine_recall@10
312
+ value: 1.0
313
+ name: Cosine Recall@10
314
+ - type: cosine_ndcg@10
315
+ value: 0.9164054079968976
316
+ name: Cosine Ndcg@10
317
+ - type: cosine_mrr@10
318
+ value: 0.8894927536231884
319
+ name: Cosine Mrr@10
320
+ - type: cosine_map@100
321
+ value: 0.8894927536231884
322
+ name: Cosine Map@100
323
+ ---
324
+
325
+ # SentenceTransformer based on intfloat/multilingual-e5-large
326
+
327
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
328
+
329
+ ## Model Details
330
+
331
+ ### Model Description
332
+ - **Model Type:** Sentence Transformer
333
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
334
+ - **Maximum Sequence Length:** 512 tokens
335
+ - **Output Dimensionality:** 1024 tokens
336
+ - **Similarity Function:** Cosine Similarity
337
+ - **Training Dataset:**
338
+ - json
339
+ <!-- - **Language:** Unknown -->
340
+ <!-- - **License:** Unknown -->
341
+
342
+ ### Model Sources
343
+
344
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
345
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
346
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
347
+
348
+ ### Full Model Architecture
349
+
350
+ ```
351
+ SentenceTransformer(
352
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
353
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
354
+ (2): Normalize()
355
+ )
356
+ ```
357
+
358
+ ## Usage
359
+
360
+ ### Direct Usage (Sentence Transformers)
361
+
362
+ First install the Sentence Transformers library:
363
+
364
+ ```bash
365
+ pip install -U sentence-transformers
366
+ ```
367
+
368
+ Then you can load this model and run inference.
369
+ ```python
370
+ from sentence_transformers import SentenceTransformer
371
+
372
+ # Download from the 🤗 Hub
373
+ model = SentenceTransformer("luka023/proba")
374
+ # Run inference
375
+ sentences = [
376
+ "'Super Jenki' sistem uključuje pet događaja i 26 pojedinačnih opklada, takođe poznat kao kanadski sistem.",
377
+ "Šta je 'Super Jenki' sistem klađenja?",
378
+ 'Kako klađenje uživo funkcioniše u tenisu?',
379
+ ]
380
+ embeddings = model.encode(sentences)
381
+ print(embeddings.shape)
382
+ # [3, 1024]
383
+
384
+ # Get the similarity scores for the embeddings
385
+ similarities = model.similarity(embeddings, embeddings)
386
+ print(similarities.shape)
387
+ # [3, 3]
388
+ ```
389
+
390
+ <!--
391
+ ### Direct Usage (Transformers)
392
+
393
+ <details><summary>Click to see the direct usage in Transformers</summary>
394
+
395
+ </details>
396
+ -->
397
+
398
+ <!--
399
+ ### Downstream Usage (Sentence Transformers)
400
+
401
+ You can finetune this model on your own dataset.
402
+
403
+ <details><summary>Click to expand</summary>
404
+
405
+ </details>
406
+ -->
407
+
408
+ <!--
409
+ ### Out-of-Scope Use
410
+
411
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
412
+ -->
413
+
414
+ ## Evaluation
415
+
416
+ ### Metrics
417
+
418
+ #### Information Retrieval
419
+ * Dataset: `dim_768`
420
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
421
+
422
+ | Metric | Value |
423
+ |:--------------------|:-----------|
424
+ | cosine_accuracy@1 | 0.8261 |
425
+ | cosine_accuracy@3 | 0.9565 |
426
+ | cosine_accuracy@5 | 1.0 |
427
+ | cosine_accuracy@10 | 1.0 |
428
+ | cosine_precision@1 | 0.8261 |
429
+ | cosine_precision@3 | 0.3188 |
430
+ | cosine_precision@5 | 0.2 |
431
+ | cosine_precision@10 | 0.1 |
432
+ | cosine_recall@1 | 0.8261 |
433
+ | cosine_recall@3 | 0.9565 |
434
+ | cosine_recall@5 | 1.0 |
435
+ | cosine_recall@10 | 1.0 |
436
+ | cosine_ndcg@10 | 0.9271 |
437
+ | cosine_mrr@10 | 0.9022 |
438
+ | **cosine_map@100** | **0.9022** |
439
+
440
+ #### Information Retrieval
441
+ * Dataset: `dim_512`
442
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
443
+
444
+ | Metric | Value |
445
+ |:--------------------|:-----------|
446
+ | cosine_accuracy@1 | 0.8696 |
447
+ | cosine_accuracy@3 | 1.0 |
448
+ | cosine_accuracy@5 | 1.0 |
449
+ | cosine_accuracy@10 | 1.0 |
450
+ | cosine_precision@1 | 0.8696 |
451
+ | cosine_precision@3 | 0.3333 |
452
+ | cosine_precision@5 | 0.2 |
453
+ | cosine_precision@10 | 0.1 |
454
+ | cosine_recall@1 | 0.8696 |
455
+ | cosine_recall@3 | 1.0 |
456
+ | cosine_recall@5 | 1.0 |
457
+ | cosine_recall@10 | 1.0 |
458
+ | cosine_ndcg@10 | 0.9462 |
459
+ | cosine_mrr@10 | 0.9275 |
460
+ | **cosine_map@100** | **0.9275** |
461
+
462
+ #### Information Retrieval
463
+ * Dataset: `dim_256`
464
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
465
+
466
+ | Metric | Value |
467
+ |:--------------------|:-----------|
468
+ | cosine_accuracy@1 | 0.8261 |
469
+ | cosine_accuracy@3 | 1.0 |
470
+ | cosine_accuracy@5 | 1.0 |
471
+ | cosine_accuracy@10 | 1.0 |
472
+ | cosine_precision@1 | 0.8261 |
473
+ | cosine_precision@3 | 0.3333 |
474
+ | cosine_precision@5 | 0.2 |
475
+ | cosine_precision@10 | 0.1 |
476
+ | cosine_recall@1 | 0.8261 |
477
+ | cosine_recall@3 | 1.0 |
478
+ | cosine_recall@5 | 1.0 |
479
+ | cosine_recall@10 | 1.0 |
480
+ | cosine_ndcg@10 | 0.9301 |
481
+ | cosine_mrr@10 | 0.9058 |
482
+ | **cosine_map@100** | **0.9058** |
483
+
484
+ #### Information Retrieval
485
+ * Dataset: `dim_128`
486
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
487
+
488
+ | Metric | Value |
489
+ |:--------------------|:-----------|
490
+ | cosine_accuracy@1 | 0.7826 |
491
+ | cosine_accuracy@3 | 0.9565 |
492
+ | cosine_accuracy@5 | 1.0 |
493
+ | cosine_accuracy@10 | 1.0 |
494
+ | cosine_precision@1 | 0.7826 |
495
+ | cosine_precision@3 | 0.3188 |
496
+ | cosine_precision@5 | 0.2 |
497
+ | cosine_precision@10 | 0.1 |
498
+ | cosine_recall@1 | 0.7826 |
499
+ | cosine_recall@3 | 0.9565 |
500
+ | cosine_recall@5 | 1.0 |
501
+ | cosine_recall@10 | 1.0 |
502
+ | cosine_ndcg@10 | 0.9092 |
503
+ | cosine_mrr@10 | 0.8783 |
504
+ | **cosine_map@100** | **0.8783** |
505
+
506
+ #### Information Retrieval
507
+ * Dataset: `dim_64`
508
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
509
+
510
+ | Metric | Value |
511
+ |:--------------------|:-----------|
512
+ | cosine_accuracy@1 | 0.8261 |
513
+ | cosine_accuracy@3 | 0.9565 |
514
+ | cosine_accuracy@5 | 0.9565 |
515
+ | cosine_accuracy@10 | 1.0 |
516
+ | cosine_precision@1 | 0.8261 |
517
+ | cosine_precision@3 | 0.3188 |
518
+ | cosine_precision@5 | 0.1913 |
519
+ | cosine_precision@10 | 0.1 |
520
+ | cosine_recall@1 | 0.8261 |
521
+ | cosine_recall@3 | 0.9565 |
522
+ | cosine_recall@5 | 0.9565 |
523
+ | cosine_recall@10 | 1.0 |
524
+ | cosine_ndcg@10 | 0.9164 |
525
+ | cosine_mrr@10 | 0.8895 |
526
+ | **cosine_map@100** | **0.8895** |
527
+
528
+ <!--
529
+ ## Bias, Risks and Limitations
530
+
531
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
532
+ -->
533
+
534
+ <!--
535
+ ### Recommendations
536
+
537
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
538
+ -->
539
+
540
+ ## Training Details
541
+
542
+ ### Training Dataset
543
+
544
+ #### json
545
+
546
+ * Dataset: json
547
+ * Size: 198 training samples
548
+ * Columns: <code>positive</code> and <code>anchor</code>
549
+ * Approximate statistics based on the first 198 samples:
550
+ | | positive | anchor |
551
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
552
+ | type | string | string |
553
+ | details | <ul><li>min: 19 tokens</li><li>mean: 33.76 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.87 tokens</li><li>max: 21 tokens</li></ul> |
554
+ * Samples:
555
+ | positive | anchor |
556
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
557
+ | <code>Klađenje na ukupan broj poena timova podrazumeva predviđanje da li će jedan tim postići više ili manje poena od postavljene granice, nezavisno od konačnog ishoda.</code> | <code>Kako funkcioniše klađenje na ukupan broj poena timova?</code> |
558
+ | <code>Konačan ishod podrazumeva klađenje na to ko će pobediti u utakmici, pri čemu postoje tri mogućnosti: pobeda domaćina, pobeda gosta ili nerešeno.</code> | <code>Šta znači klađenje na konačan ishod?</code> |
559
+ | <code>Patent opklada uključuje tri događaja sa ukupno sedam pojedinačnih opklada: tri singl, tri dubl i jedna trostruka opklada.</code> | <code>Šta je patent opklada?</code> |
560
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
561
+ ```json
562
+ {
563
+ "loss": "MultipleNegativesRankingLoss",
564
+ "matryoshka_dims": [
565
+ 768,
566
+ 512,
567
+ 256,
568
+ 128,
569
+ 64
570
+ ],
571
+ "matryoshka_weights": [
572
+ 1,
573
+ 1,
574
+ 1,
575
+ 1,
576
+ 1
577
+ ],
578
+ "n_dims_per_step": -1
579
+ }
580
+ ```
581
+
582
+ ### Training Hyperparameters
583
+ #### Non-Default Hyperparameters
584
+
585
+ - `eval_strategy`: epoch
586
+ - `per_device_train_batch_size`: 32
587
+ - `per_device_eval_batch_size`: 16
588
+ - `gradient_accumulation_steps`: 16
589
+ - `learning_rate`: 2e-05
590
+ - `num_train_epochs`: 4
591
+ - `lr_scheduler_type`: cosine
592
+ - `warmup_ratio`: 0.1
593
+ - `bf16`: True
594
+ - `tf32`: False
595
+ - `load_best_model_at_end`: True
596
+ - `optim`: adamw_torch_fused
597
+ - `batch_sampler`: no_duplicates
598
+
599
+ #### All Hyperparameters
600
+ <details><summary>Click to expand</summary>
601
+
602
+ - `overwrite_output_dir`: False
603
+ - `do_predict`: False
604
+ - `eval_strategy`: epoch
605
+ - `prediction_loss_only`: True
606
+ - `per_device_train_batch_size`: 32
607
+ - `per_device_eval_batch_size`: 16
608
+ - `per_gpu_train_batch_size`: None
609
+ - `per_gpu_eval_batch_size`: None
610
+ - `gradient_accumulation_steps`: 16
611
+ - `eval_accumulation_steps`: None
612
+ - `torch_empty_cache_steps`: None
613
+ - `learning_rate`: 2e-05
614
+ - `weight_decay`: 0.0
615
+ - `adam_beta1`: 0.9
616
+ - `adam_beta2`: 0.999
617
+ - `adam_epsilon`: 1e-08
618
+ - `max_grad_norm`: 1.0
619
+ - `num_train_epochs`: 4
620
+ - `max_steps`: -1
621
+ - `lr_scheduler_type`: cosine
622
+ - `lr_scheduler_kwargs`: {}
623
+ - `warmup_ratio`: 0.1
624
+ - `warmup_steps`: 0
625
+ - `log_level`: passive
626
+ - `log_level_replica`: warning
627
+ - `log_on_each_node`: True
628
+ - `logging_nan_inf_filter`: True
629
+ - `save_safetensors`: True
630
+ - `save_on_each_node`: False
631
+ - `save_only_model`: False
632
+ - `restore_callback_states_from_checkpoint`: False
633
+ - `no_cuda`: False
634
+ - `use_cpu`: False
635
+ - `use_mps_device`: False
636
+ - `seed`: 42
637
+ - `data_seed`: None
638
+ - `jit_mode_eval`: False
639
+ - `use_ipex`: False
640
+ - `bf16`: True
641
+ - `fp16`: False
642
+ - `fp16_opt_level`: O1
643
+ - `half_precision_backend`: auto
644
+ - `bf16_full_eval`: False
645
+ - `fp16_full_eval`: False
646
+ - `tf32`: False
647
+ - `local_rank`: 0
648
+ - `ddp_backend`: None
649
+ - `tpu_num_cores`: None
650
+ - `tpu_metrics_debug`: False
651
+ - `debug`: []
652
+ - `dataloader_drop_last`: False
653
+ - `dataloader_num_workers`: 0
654
+ - `dataloader_prefetch_factor`: None
655
+ - `past_index`: -1
656
+ - `disable_tqdm`: False
657
+ - `remove_unused_columns`: True
658
+ - `label_names`: None
659
+ - `load_best_model_at_end`: True
660
+ - `ignore_data_skip`: False
661
+ - `fsdp`: []
662
+ - `fsdp_min_num_params`: 0
663
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
664
+ - `fsdp_transformer_layer_cls_to_wrap`: None
665
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
666
+ - `deepspeed`: None
667
+ - `label_smoothing_factor`: 0.0
668
+ - `optim`: adamw_torch_fused
669
+ - `optim_args`: None
670
+ - `adafactor`: False
671
+ - `group_by_length`: False
672
+ - `length_column_name`: length
673
+ - `ddp_find_unused_parameters`: None
674
+ - `ddp_bucket_cap_mb`: None
675
+ - `ddp_broadcast_buffers`: False
676
+ - `dataloader_pin_memory`: True
677
+ - `dataloader_persistent_workers`: False
678
+ - `skip_memory_metrics`: True
679
+ - `use_legacy_prediction_loop`: False
680
+ - `push_to_hub`: False
681
+ - `resume_from_checkpoint`: None
682
+ - `hub_model_id`: None
683
+ - `hub_strategy`: every_save
684
+ - `hub_private_repo`: False
685
+ - `hub_always_push`: False
686
+ - `gradient_checkpointing`: False
687
+ - `gradient_checkpointing_kwargs`: None
688
+ - `include_inputs_for_metrics`: False
689
+ - `eval_do_concat_batches`: True
690
+ - `fp16_backend`: auto
691
+ - `push_to_hub_model_id`: None
692
+ - `push_to_hub_organization`: None
693
+ - `mp_parameters`:
694
+ - `auto_find_batch_size`: False
695
+ - `full_determinism`: False
696
+ - `torchdynamo`: None
697
+ - `ray_scope`: last
698
+ - `ddp_timeout`: 1800
699
+ - `torch_compile`: False
700
+ - `torch_compile_backend`: None
701
+ - `torch_compile_mode`: None
702
+ - `dispatch_batches`: None
703
+ - `split_batches`: None
704
+ - `include_tokens_per_second`: False
705
+ - `include_num_input_tokens_seen`: False
706
+ - `neftune_noise_alpha`: None
707
+ - `optim_target_modules`: None
708
+ - `batch_eval_metrics`: False
709
+ - `eval_on_start`: False
710
+ - `eval_use_gather_object`: False
711
+ - `batch_sampler`: no_duplicates
712
+ - `multi_dataset_batch_sampler`: proportional
713
+
714
+ </details>
715
+
716
+ ### Training Logs
717
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
718
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
719
+ | 1.0 | 1 | 0.6717 | 0.7663 | 0.8229 | 0.5755 | 0.8242 |
720
+ | **2.0** | **2** | **0.7779** | **0.8457** | **0.8638** | **0.7833** | **0.8635** |
721
+ | 3.0 | 4 | 0.8410 | 0.8732 | 0.8674 | 0.8167 | 0.8659 |
722
+ | 1.0 | 1 | 0.8410 | 0.8732 | 0.8674 | 0.8167 | 0.8659 |
723
+ | **2.0** | **2** | **0.8845** | **0.8732** | **0.9022** | **0.858** | **0.9022** |
724
+ | 3.0 | 4 | 0.8783 | 0.9058 | 0.9275 | 0.8895 | 0.9022 |
725
+
726
+ * The bold row denotes the saved checkpoint.
727
+
728
+ ### Framework Versions
729
+ - Python: 3.10.12
730
+ - Sentence Transformers: 3.1.0
731
+ - Transformers: 4.44.2
732
+ - PyTorch: 2.4.0+cu121
733
+ - Accelerate: 0.33.0
734
+ - Datasets: 3.0.0
735
+ - Tokenizers: 0.19.1
736
+
737
+ ## Citation
738
+
739
+ ### BibTeX
740
+
741
+ #### Sentence Transformers
742
+ ```bibtex
743
+ @inproceedings{reimers-2019-sentence-bert,
744
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
745
+ author = "Reimers, Nils and Gurevych, Iryna",
746
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
747
+ month = "11",
748
+ year = "2019",
749
+ publisher = "Association for Computational Linguistics",
750
+ url = "https://arxiv.org/abs/1908.10084",
751
+ }
752
+ ```
753
+
754
+ #### MatryoshkaLoss
755
+ ```bibtex
756
+ @misc{kusupati2024matryoshka,
757
+ title={Matryoshka Representation Learning},
758
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
759
+ year={2024},
760
+ eprint={2205.13147},
761
+ archivePrefix={arXiv},
762
+ primaryClass={cs.LG}
763
+ }
764
+ ```
765
+
766
+ #### MultipleNegativesRankingLoss
767
+ ```bibtex
768
+ @misc{henderson2017efficient,
769
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
770
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
771
+ year={2017},
772
+ eprint={1705.00652},
773
+ archivePrefix={arXiv},
774
+ primaryClass={cs.CL}
775
+ }
776
+ ```
777
+
778
+ <!--
779
+ ## Glossary
780
+
781
+ *Clearly define terms in order to be accessible across audiences.*
782
+ -->
783
+
784
+ <!--
785
+ ## Model Card Authors
786
+
787
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
788
+ -->
789
+
790
+ <!--
791
+ ## Model Card Contact
792
+
793
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
794
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d415029e4b7550875431ce9c454dda2cf594d2205a6c44fabf062903ac23fb3
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }