lvodoleyl commited on
Commit
a2ed2b2
·
1 Parent(s): ca1ab85

Первый коммит с DRL моделью

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.46 +/- 20.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b68dd3670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b68dd3700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b68dd3790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b68dd3820>", "_build": "<function ActorCriticPolicy._build at 0x7f7b68dd38b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7b68dd3940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b68dd39d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7b68dd3a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b68dd3af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b68dd3b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b68dd3c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7b68dcf7e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671657257632898926, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMQjb66rWe9nm0TOwXvEDooTcU+u/FTugAAgD8AAIA/gDiYvY9RIz56SY+9fUp0voe1uL2u3i29AAAAAAAAAABm9DQ8UvPdu5sz/Dutcjs9aiwWO1oVArsAAIA/AACAP2ZzH73sZd67bnzivG7LGD3uZFM9Rsr6vQAAgD8AAIA/TezsvUDeHj9MKbA5l/eXvqNLqL1LkS09AAAAAAAAAAAAKLu8ZDKyP16UQr9dspu+Z3ypPN6Z0j0AAAAAAAAAAI1t6r1SkqQ/my5rvgnY6r4BjSm+/BKGvQAAAAAAAAAALRoBPnc2pT9DeJ4+hlmtvjJ6Qz7EIxw+AAAAAAAAAAAA4ES6g9q1PwV4nbx6YyC+NhBDvdsL4jsAAAAAAAAAAJp7/TwFHAI/eEYbPcn8ir4eQ1s9xueJPQAAAAAAAAAAAPWpPMNVBLquHvYx7wg4sbQwHrsiiZqyAACAPwAAgD+aypy8FH6SuhVq/7H860Yxhp/+OoZoFjMAAIA/AACAP2Z+bL1cdng+q3DmvYlJkb4f4DC9qG+xvAAAAAAAAAAAmpS2vRjUTT/fvEw943etvqxTq700SjK9AAAAAAAAAAC9AXK+IxaAP6uVkj1m5KS+O78evj6Xyj0AAAAAAAAAAACGfjzTmoI+aphfPD9Iar6C/A+86DHCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzzC1pU7jcUCUhpRSlIwBbJRNGwGMAXSUR0CWSJIHC4z8dX2UKGgGaAloD0MIA7NCke73cECUhpRSlGgVTTYBaBZHQJZJsvnKW9l1fZQoaAZoCWgPQwh8JvvnaaByQJSGlFKUaBVNLwFoFkdAlkosG5c1O3V9lChoBmgJaA9DCOntz0UDU3BAlIaUUpRoFU1jAWgWR0CWSmyAQQMAdX2UKGgGaAloD0MIWfllMEZNcECUhpRSlGgVTSQBaBZHQJZLEmZ3LV51fZQoaAZoCWgPQwi2aWyvBV5vQJSGlFKUaBVNFQFoFkdAlkspwGW2PXV9lChoBmgJaA9DCLKDSlwHz3FAlIaUUpRoFU0oAWgWR0CWS0mJFb3XdX2UKGgGaAloD0MI/3qFBffobUCUhpRSlGgVTTABaBZHQJZLpYp2ECh1fZQoaAZoCWgPQwh2wHXFjJJGQJSGlFKUaBVL6GgWR0CWS+WUr08OdX2UKGgGaAloD0MI7s7abRf2b0CUhpRSlGgVTU8BaBZHQJZN7tRekYZ1fZQoaAZoCWgPQwjvyFht/iFxQJSGlFKUaBVNJQFoFkdAlk5/3nIQv3V9lChoBmgJaA9DCOZAD7VtlW1AlIaUUpRoFU0zAWgWR0CWTwVLzwtrdX2UKGgGaAloD0MIaRmp99TFckCUhpRSlGgVTVgBaBZHQJZPG1+iJwd1fZQoaAZoCWgPQwjHvfkNEx1NQJSGlFKUaBVL5GgWR0CWT1N83MpxdX2UKGgGaAloD0MIi06WWi8OcECUhpRSlGgVTTkBaBZHQJZPgpKBd2R1fZQoaAZoCWgPQwiBeF2/4EtxQJSGlFKUaBVNNAFoFkdAllDw/s3Q2XV9lChoBmgJaA9DCNycSgaA6nJAlIaUUpRoFU0eAWgWR0CWUstxMnJDdX2UKGgGaAloD0MI56vkY/dXbkCUhpRSlGgVTU8BaBZHQJZS5Ok+HJt1fZQoaAZoCWgPQwjUf9b8+BBsQJSGlFKUaBVNEQFoFkdAllN5IMBp6HV9lChoBmgJaA9DCMXHJ2RnNnFAlIaUUpRoFU1EAWgWR0CWU59/BnBddX2UKGgGaAloD0MI1lJA2n8XcECUhpRSlGgVTTcBaBZHQJZT5eWv8qF1fZQoaAZoCWgPQwhvm6kQD7ZrQJSGlFKUaBVNHAFoFkdAllQ6XKKYRnV9lChoBmgJaA9DCEOu1LOgkW1AlIaUUpRoFU0vAWgWR0CWVE/VAiV0dX2UKGgGaAloD0MI7Ulgc04Rc0CUhpRSlGgVTRoBaBZHQJZUdbILgGd1fZQoaAZoCWgPQwjmz7cFSyFwQJSGlFKUaBVNYQFoFkdAllWxv73wkXV9lChoBmgJaA9DCG+9pgcFtU5AlIaUUpRoFUvdaBZHQJZVzifg75p1fZQoaAZoCWgPQwiv6qwWGCFyQJSGlFKUaBVNDgFoFkdAllYf3rUsnXV9lChoBmgJaA9DCIyGjEfp2XFAlIaUUpRoFU0JAWgWR0CWVwwVj7Q+dX2UKGgGaAloD0MI2sngKPl0cECUhpRSlGgVTUQBaBZHQJZYFT987ZF1fZQoaAZoCWgPQwixFMlXQpdwQJSGlFKUaBVNMgFoFkdAlliZq/M4cXV9lChoBmgJaA9DCMaLhSGyGXJAlIaUUpRoFU0+AWgWR0CWWLvQWvbHdX2UKGgGaAloD0MIMuauJWR/ckCUhpRSlGgVS/FoFkdAllrRqsU7CHV9lChoBmgJaA9DCE57Ss7JdXJAlIaUUpRoFU1QAWgWR0CWWxLK3d9EdX2UKGgGaAloD0MImfIhqFrkcECUhpRSlGgVTSgBaBZHQJZcSL74zrN1fZQoaAZoCWgPQwggeedQhuBxQJSGlFKUaBVNFQFoFkdAllyDq0MPSXV9lChoBmgJaA9DCMiyYOJPunFAlIaUUpRoFU1GAWgWR0CWXLWNm16WdX2UKGgGaAloD0MI9YO6SCFzb0CUhpRSlGgVTScBaBZHQJZc/A31jAl1fZQoaAZoCWgPQwj8cma7wvtuQJSGlFKUaBVNVAFoFkdAll0OBtk4FXV9lChoBmgJaA9DCOSCM/i7TnBAlIaUUpRoFU0+AWgWR0CWXR0o0ALidX2UKGgGaAloD0MIU8xB0NEiO0CUhpRSlGgVS/5oFkdAll08Djin53V9lChoBmgJaA9DCCLH1jOEz3FAlIaUUpRoFU0tAWgWR0CWXWY6GQCCdX2UKGgGaAloD0MIZM3IILdNckCUhpRSlGgVTQcBaBZHQJZd4QJ5VwR1fZQoaAZoCWgPQwhlx0YgnstxQJSGlFKUaBVNOQFoFkdAll6/4VRDTnV9lChoBmgJaA9DCLJl+brM0HFAlIaUUpRoFU0rAWgWR0CWX5OUdJardX2UKGgGaAloD0MIFYxK6oSOcUCUhpRSlGgVTScBaBZHQJZhEVKwpvx1fZQoaAZoCWgPQwj8yK1JNw9yQJSGlFKUaBVNLAFoFkdAlmFgTM7lrHV9lChoBmgJaA9DCARVo1dDfnFAlIaUUpRoFU1YAWgWR0CWYhnGsFMadX2UKGgGaAloD0MIGeWZl0PDcECUhpRSlGgVTT8BaBZHQJZ3Ryhi9Zl1fZQoaAZoCWgPQwigbwuWaupwQJSGlFKUaBVNGAFoFkdAlnfuwkgOjXV9lChoBmgJaA9DCNvC81KxO3FAlIaUUpRoFU0gAWgWR0CWeAbqhUR4dX2UKGgGaAloD0MI7//jhAkrckCUhpRSlGgVTR0BaBZHQJZ44ZwXIlt1fZQoaAZoCWgPQwgPSMK+nSBwQJSGlFKUaBVNHwFoFkdAlnkgkxASnXV9lChoBmgJaA9DCEMDsWymcXBAlIaUUpRoFU1EAWgWR0CWeSspobn6dX2UKGgGaAloD0MIhleSPBcFcECUhpRSlGgVTWcBaBZHQJZ5LLKV6eJ1fZQoaAZoCWgPQwgz+tFwis5yQJSGlFKUaBVNNgFoFkdAlnl6x9oexXV9lChoBmgJaA9DCL/Rjht+0m9AlIaUUpRoFU09AWgWR0CWecIt16mgdX2UKGgGaAloD0MImgrxSHwncECUhpRSlGgVTTcBaBZHQJZ6eOGTLW91fZQoaAZoCWgPQwhR24ZREEBuQJSGlFKUaBVNIAFoFkdAlnreMZP2wnV9lChoBmgJaA9DCEg0gSLWfHBAlIaUUpRoFU1vAWgWR0CWew+x4Y78dX2UKGgGaAloD0MIp+mzA+4dcECUhpRSlGgVTTEBaBZHQJZ8JP420iR1fZQoaAZoCWgPQwht5pDUAqZxQJSGlFKUaBVNKgFoFkdAln1dUGVzIXV9lChoBmgJaA9DCICcMGE0RXBAlIaUUpRoFU0pAWgWR0CWfZ+eOGTLdX2UKGgGaAloD0MI8rG7QAmPcUCUhpRSlGgVTVUBaBZHQJZ/uhsZYPp1fZQoaAZoCWgPQwjmkT8Y+PFxQJSGlFKUaBVNEwFoFkdAln+2tyPuHHV9lChoBmgJaA9DCPM64pBNznBAlIaUUpRoFU0PAWgWR0CWgOnWrfcfdX2UKGgGaAloD0MIT8x6MZTVbUCUhpRSlGgVTREBaBZHQJaBPYFqzqt1fZQoaAZoCWgPQwitoj8089JwQJSGlFKUaBVNLwFoFkdAloFHdj5KvnV9lChoBmgJaA9DCCbD8XzGQXFAlIaUUpRoFU00AWgWR0CWgWCf6Gg0dX2UKGgGaAloD0MIjNtoAO/scUCUhpRSlGgVTSABaBZHQJaBtFRYRul1fZQoaAZoCWgPQwibqntkc8ZwQJSGlFKUaBVNFQFoFkdAloK/FBIFvHV9lChoBmgJaA9DCNNp3Qb1inJAlIaUUpRoFU04AWgWR0CWgw2mYSg5dX2UKGgGaAloD0MI0Qg2rv99b0CUhpRSlGgVTVcBaBZHQJaDudNFjNJ1fZQoaAZoCWgPQwgmqUwxx4ZwQJSGlFKUaBVNOgFoFkdAloSBx5s0pHV9lChoBmgJaA9DCO7Nb5ioiHJAlIaUUpRoFU0WAWgWR0CWhLRL9MsZdX2UKGgGaAloD0MIsMivH2Jnb0CUhpRSlGgVTYEBaBZHQJaGYtEofCB1fZQoaAZoCWgPQwjKF7SQQG9wQJSGlFKUaBVNLQFoFkdAloa4JNTLn3V9lChoBmgJaA9DCJvJN9vcinBAlIaUUpRoFU1FAWgWR0CWh7cnE2pAdX2UKGgGaAloD0MIfCb752lQMECUhpRSlGgVTQQBaBZHQJaHvronrpt1fZQoaAZoCWgPQwiUT49tmftyQJSGlFKUaBVL72gWR0CWiI0aqCHzdX2UKGgGaAloD0MINQhzuxckckCUhpRSlGgVTToBaBZHQJaJWVNYbKl1fZQoaAZoCWgPQwh4X5ULFRxyQJSGlFKUaBVNIQFoFkdAlomygGr0a3V9lChoBmgJaA9DCOolxjJ97nBAlIaUUpRoFU0oAWgWR0CWij+0w8GLdX2UKGgGaAloD0MIbt+j/nrkcECUhpRSlGgVTUUBaBZHQJaLQriEQGx1fZQoaAZoCWgPQwhRM6SK4s1uQJSGlFKUaBVNIwFoFkdAlouzRYzSC3V9lChoBmgJaA9DCIqvdhQnbHJAlIaUUpRoFU0oAWgWR0CWjCP9DQZ5dX2UKGgGaAloD0MIon2s4Ld3bUCUhpRSlGgVTR0BaBZHQJaMeP+4smR1fZQoaAZoCWgPQwiyne+nRuBwQJSGlFKUaBVNAgFoFkdAloyo55qubXV9lChoBmgJaA9DCCtR9pYyanJAlIaUUpRoFU2dAWgWR0CWjmo4MnZ1dX2UKGgGaAloD0MICg+aXTc7cUCUhpRSlGgVTREBaBZHQJaO5C9h7Vt1fZQoaAZoCWgPQwgRNdHno2dxQJSGlFKUaBVNVwFoFkdAlo8T5ftx/HV9lChoBmgJaA9DCDv7yoP0ZEFAlIaUUpRoFUv7aBZHQJaQbppvgm91fZQoaAZoCWgPQwgRcAhVajJyQJSGlFKUaBVNOgFoFkdAlpB81baAWnV9lChoBmgJaA9DCEwao3XUx3FAlIaUUpRoFU07AWgWR0CWkcUmlZX/dX2UKGgGaAloD0MIFRqIZfNEcECUhpRSlGgVTVcBaBZHQJaSwikfs/p1fZQoaAZoCWgPQwgHeNLCpQxxQJSGlFKUaBVNNwFoFkdAlpQIzWPLgXV9lChoBmgJaA9DCKkT0EQYgnBAlIaUUpRoFU1EAWgWR0CWlBsw+MZQdX2UKGgGaAloD0MIeh1xyIambkCUhpRSlGgVTUMBaBZHQJaVBT987ZF1fZQoaAZoCWgPQwhy32qduC1wQJSGlFKUaBVNMgFoFkdAlpVzAvcrRXV9lChoBmgJaA9DCHrIlA/BFHBAlIaUUpRoFU02AWgWR0CWlgkWykbhdX2UKGgGaAloD0MIcD51rNKZbkCUhpRSlGgVTTMBaBZHQJaWdnXd0q91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
exp0_ppo_rl.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36a7e65ec540119bdf4a56f5ed52217622a2f79fb5a0b7fa1590f0f4af961f6f
3
+ size 147210
exp0_ppo_rl/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
exp0_ppo_rl/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b68dd3670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b68dd3700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b68dd3790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b68dd3820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7b68dd38b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7b68dd3940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b68dd39d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7b68dd3a60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b68dd3af0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b68dd3b80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b68dd3c10>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7b68dcf7e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671657257632898926,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMQjb66rWe9nm0TOwXvEDooTcU+u/FTugAAgD8AAIA/gDiYvY9RIz56SY+9fUp0voe1uL2u3i29AAAAAAAAAABm9DQ8UvPdu5sz/Dutcjs9aiwWO1oVArsAAIA/AACAP2ZzH73sZd67bnzivG7LGD3uZFM9Rsr6vQAAgD8AAIA/TezsvUDeHj9MKbA5l/eXvqNLqL1LkS09AAAAAAAAAAAAKLu8ZDKyP16UQr9dspu+Z3ypPN6Z0j0AAAAAAAAAAI1t6r1SkqQ/my5rvgnY6r4BjSm+/BKGvQAAAAAAAAAALRoBPnc2pT9DeJ4+hlmtvjJ6Qz7EIxw+AAAAAAAAAAAA4ES6g9q1PwV4nbx6YyC+NhBDvdsL4jsAAAAAAAAAAJp7/TwFHAI/eEYbPcn8ir4eQ1s9xueJPQAAAAAAAAAAAPWpPMNVBLquHvYx7wg4sbQwHrsiiZqyAACAPwAAgD+aypy8FH6SuhVq/7H860Yxhp/+OoZoFjMAAIA/AACAP2Z+bL1cdng+q3DmvYlJkb4f4DC9qG+xvAAAAAAAAAAAmpS2vRjUTT/fvEw943etvqxTq700SjK9AAAAAAAAAAC9AXK+IxaAP6uVkj1m5KS+O78evj6Xyj0AAAAAAAAAAACGfjzTmoI+aphfPD9Iar6C/A+86DHCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzzC1pU7jcUCUhpRSlIwBbJRNGwGMAXSUR0CWSJIHC4z8dX2UKGgGaAloD0MIA7NCke73cECUhpRSlGgVTTYBaBZHQJZJsvnKW9l1fZQoaAZoCWgPQwh8JvvnaaByQJSGlFKUaBVNLwFoFkdAlkosG5c1O3V9lChoBmgJaA9DCOntz0UDU3BAlIaUUpRoFU1jAWgWR0CWSmyAQQMAdX2UKGgGaAloD0MIWfllMEZNcECUhpRSlGgVTSQBaBZHQJZLEmZ3LV51fZQoaAZoCWgPQwi2aWyvBV5vQJSGlFKUaBVNFQFoFkdAlkspwGW2PXV9lChoBmgJaA9DCLKDSlwHz3FAlIaUUpRoFU0oAWgWR0CWS0mJFb3XdX2UKGgGaAloD0MI/3qFBffobUCUhpRSlGgVTTABaBZHQJZLpYp2ECh1fZQoaAZoCWgPQwh2wHXFjJJGQJSGlFKUaBVL6GgWR0CWS+WUr08OdX2UKGgGaAloD0MI7s7abRf2b0CUhpRSlGgVTU8BaBZHQJZN7tRekYZ1fZQoaAZoCWgPQwjvyFht/iFxQJSGlFKUaBVNJQFoFkdAlk5/3nIQv3V9lChoBmgJaA9DCOZAD7VtlW1AlIaUUpRoFU0zAWgWR0CWTwVLzwtrdX2UKGgGaAloD0MIaRmp99TFckCUhpRSlGgVTVgBaBZHQJZPG1+iJwd1fZQoaAZoCWgPQwjHvfkNEx1NQJSGlFKUaBVL5GgWR0CWT1N83MpxdX2UKGgGaAloD0MIi06WWi8OcECUhpRSlGgVTTkBaBZHQJZPgpKBd2R1fZQoaAZoCWgPQwiBeF2/4EtxQJSGlFKUaBVNNAFoFkdAllDw/s3Q2XV9lChoBmgJaA9DCNycSgaA6nJAlIaUUpRoFU0eAWgWR0CWUstxMnJDdX2UKGgGaAloD0MI56vkY/dXbkCUhpRSlGgVTU8BaBZHQJZS5Ok+HJt1fZQoaAZoCWgPQwjUf9b8+BBsQJSGlFKUaBVNEQFoFkdAllN5IMBp6HV9lChoBmgJaA9DCMXHJ2RnNnFAlIaUUpRoFU1EAWgWR0CWU59/BnBddX2UKGgGaAloD0MI1lJA2n8XcECUhpRSlGgVTTcBaBZHQJZT5eWv8qF1fZQoaAZoCWgPQwhvm6kQD7ZrQJSGlFKUaBVNHAFoFkdAllQ6XKKYRnV9lChoBmgJaA9DCEOu1LOgkW1AlIaUUpRoFU0vAWgWR0CWVE/VAiV0dX2UKGgGaAloD0MI7Ulgc04Rc0CUhpRSlGgVTRoBaBZHQJZUdbILgGd1fZQoaAZoCWgPQwjmz7cFSyFwQJSGlFKUaBVNYQFoFkdAllWxv73wkXV9lChoBmgJaA9DCG+9pgcFtU5AlIaUUpRoFUvdaBZHQJZVzifg75p1fZQoaAZoCWgPQwiv6qwWGCFyQJSGlFKUaBVNDgFoFkdAllYf3rUsnXV9lChoBmgJaA9DCIyGjEfp2XFAlIaUUpRoFU0JAWgWR0CWVwwVj7Q+dX2UKGgGaAloD0MI2sngKPl0cECUhpRSlGgVTUQBaBZHQJZYFT987ZF1fZQoaAZoCWgPQwixFMlXQpdwQJSGlFKUaBVNMgFoFkdAlliZq/M4cXV9lChoBmgJaA9DCMaLhSGyGXJAlIaUUpRoFU0+AWgWR0CWWLvQWvbHdX2UKGgGaAloD0MIMuauJWR/ckCUhpRSlGgVS/FoFkdAllrRqsU7CHV9lChoBmgJaA9DCE57Ss7JdXJAlIaUUpRoFU1QAWgWR0CWWxLK3d9EdX2UKGgGaAloD0MImfIhqFrkcECUhpRSlGgVTSgBaBZHQJZcSL74zrN1fZQoaAZoCWgPQwggeedQhuBxQJSGlFKUaBVNFQFoFkdAllyDq0MPSXV9lChoBmgJaA9DCMiyYOJPunFAlIaUUpRoFU1GAWgWR0CWXLWNm16WdX2UKGgGaAloD0MI9YO6SCFzb0CUhpRSlGgVTScBaBZHQJZc/A31jAl1fZQoaAZoCWgPQwj8cma7wvtuQJSGlFKUaBVNVAFoFkdAll0OBtk4FXV9lChoBmgJaA9DCOSCM/i7TnBAlIaUUpRoFU0+AWgWR0CWXR0o0ALidX2UKGgGaAloD0MIU8xB0NEiO0CUhpRSlGgVS/5oFkdAll08Djin53V9lChoBmgJaA9DCCLH1jOEz3FAlIaUUpRoFU0tAWgWR0CWXWY6GQCCdX2UKGgGaAloD0MIZM3IILdNckCUhpRSlGgVTQcBaBZHQJZd4QJ5VwR1fZQoaAZoCWgPQwhlx0YgnstxQJSGlFKUaBVNOQFoFkdAll6/4VRDTnV9lChoBmgJaA9DCLJl+brM0HFAlIaUUpRoFU0rAWgWR0CWX5OUdJardX2UKGgGaAloD0MIFYxK6oSOcUCUhpRSlGgVTScBaBZHQJZhEVKwpvx1fZQoaAZoCWgPQwj8yK1JNw9yQJSGlFKUaBVNLAFoFkdAlmFgTM7lrHV9lChoBmgJaA9DCARVo1dDfnFAlIaUUpRoFU1YAWgWR0CWYhnGsFMadX2UKGgGaAloD0MIGeWZl0PDcECUhpRSlGgVTT8BaBZHQJZ3Ryhi9Zl1fZQoaAZoCWgPQwigbwuWaupwQJSGlFKUaBVNGAFoFkdAlnfuwkgOjXV9lChoBmgJaA9DCNvC81KxO3FAlIaUUpRoFU0gAWgWR0CWeAbqhUR4dX2UKGgGaAloD0MI7//jhAkrckCUhpRSlGgVTR0BaBZHQJZ44ZwXIlt1fZQoaAZoCWgPQwgPSMK+nSBwQJSGlFKUaBVNHwFoFkdAlnkgkxASnXV9lChoBmgJaA9DCEMDsWymcXBAlIaUUpRoFU1EAWgWR0CWeSspobn6dX2UKGgGaAloD0MIhleSPBcFcECUhpRSlGgVTWcBaBZHQJZ5LLKV6eJ1fZQoaAZoCWgPQwgz+tFwis5yQJSGlFKUaBVNNgFoFkdAlnl6x9oexXV9lChoBmgJaA9DCL/Rjht+0m9AlIaUUpRoFU09AWgWR0CWecIt16mgdX2UKGgGaAloD0MImgrxSHwncECUhpRSlGgVTTcBaBZHQJZ6eOGTLW91fZQoaAZoCWgPQwhR24ZREEBuQJSGlFKUaBVNIAFoFkdAlnreMZP2wnV9lChoBmgJaA9DCEg0gSLWfHBAlIaUUpRoFU1vAWgWR0CWew+x4Y78dX2UKGgGaAloD0MIp+mzA+4dcECUhpRSlGgVTTEBaBZHQJZ8JP420iR1fZQoaAZoCWgPQwht5pDUAqZxQJSGlFKUaBVNKgFoFkdAln1dUGVzIXV9lChoBmgJaA9DCICcMGE0RXBAlIaUUpRoFU0pAWgWR0CWfZ+eOGTLdX2UKGgGaAloD0MI8rG7QAmPcUCUhpRSlGgVTVUBaBZHQJZ/uhsZYPp1fZQoaAZoCWgPQwjmkT8Y+PFxQJSGlFKUaBVNEwFoFkdAln+2tyPuHHV9lChoBmgJaA9DCPM64pBNznBAlIaUUpRoFU0PAWgWR0CWgOnWrfcfdX2UKGgGaAloD0MIT8x6MZTVbUCUhpRSlGgVTREBaBZHQJaBPYFqzqt1fZQoaAZoCWgPQwitoj8089JwQJSGlFKUaBVNLwFoFkdAloFHdj5KvnV9lChoBmgJaA9DCCbD8XzGQXFAlIaUUpRoFU00AWgWR0CWgWCf6Gg0dX2UKGgGaAloD0MIjNtoAO/scUCUhpRSlGgVTSABaBZHQJaBtFRYRul1fZQoaAZoCWgPQwibqntkc8ZwQJSGlFKUaBVNFQFoFkdAloK/FBIFvHV9lChoBmgJaA9DCNNp3Qb1inJAlIaUUpRoFU04AWgWR0CWgw2mYSg5dX2UKGgGaAloD0MI0Qg2rv99b0CUhpRSlGgVTVcBaBZHQJaDudNFjNJ1fZQoaAZoCWgPQwgmqUwxx4ZwQJSGlFKUaBVNOgFoFkdAloSBx5s0pHV9lChoBmgJaA9DCO7Nb5ioiHJAlIaUUpRoFU0WAWgWR0CWhLRL9MsZdX2UKGgGaAloD0MIsMivH2Jnb0CUhpRSlGgVTYEBaBZHQJaGYtEofCB1fZQoaAZoCWgPQwjKF7SQQG9wQJSGlFKUaBVNLQFoFkdAloa4JNTLn3V9lChoBmgJaA9DCJvJN9vcinBAlIaUUpRoFU1FAWgWR0CWh7cnE2pAdX2UKGgGaAloD0MIfCb752lQMECUhpRSlGgVTQQBaBZHQJaHvronrpt1fZQoaAZoCWgPQwiUT49tmftyQJSGlFKUaBVL72gWR0CWiI0aqCHzdX2UKGgGaAloD0MINQhzuxckckCUhpRSlGgVTToBaBZHQJaJWVNYbKl1fZQoaAZoCWgPQwh4X5ULFRxyQJSGlFKUaBVNIQFoFkdAlomygGr0a3V9lChoBmgJaA9DCOolxjJ97nBAlIaUUpRoFU0oAWgWR0CWij+0w8GLdX2UKGgGaAloD0MIbt+j/nrkcECUhpRSlGgVTUUBaBZHQJaLQriEQGx1fZQoaAZoCWgPQwhRM6SK4s1uQJSGlFKUaBVNIwFoFkdAlouzRYzSC3V9lChoBmgJaA9DCIqvdhQnbHJAlIaUUpRoFU0oAWgWR0CWjCP9DQZ5dX2UKGgGaAloD0MIon2s4Ld3bUCUhpRSlGgVTR0BaBZHQJaMeP+4smR1fZQoaAZoCWgPQwiyne+nRuBwQJSGlFKUaBVNAgFoFkdAloyo55qubXV9lChoBmgJaA9DCCtR9pYyanJAlIaUUpRoFU2dAWgWR0CWjmo4MnZ1dX2UKGgGaAloD0MICg+aXTc7cUCUhpRSlGgVTREBaBZHQJaO5C9h7Vt1fZQoaAZoCWgPQwgRNdHno2dxQJSGlFKUaBVNVwFoFkdAlo8T5ftx/HV9lChoBmgJaA9DCDv7yoP0ZEFAlIaUUpRoFUv7aBZHQJaQbppvgm91fZQoaAZoCWgPQwgRcAhVajJyQJSGlFKUaBVNOgFoFkdAlpB81baAWnV9lChoBmgJaA9DCEwao3XUx3FAlIaUUpRoFU07AWgWR0CWkcUmlZX/dX2UKGgGaAloD0MIFRqIZfNEcECUhpRSlGgVTVcBaBZHQJaSwikfs/p1fZQoaAZoCWgPQwgHeNLCpQxxQJSGlFKUaBVNNwFoFkdAlpQIzWPLgXV9lChoBmgJaA9DCKkT0EQYgnBAlIaUUpRoFU1EAWgWR0CWlBsw+MZQdX2UKGgGaAloD0MIeh1xyIambkCUhpRSlGgVTUMBaBZHQJaVBT987ZF1fZQoaAZoCWgPQwhy32qduC1wQJSGlFKUaBVNMgFoFkdAlpVzAvcrRXV9lChoBmgJaA9DCHrIlA/BFHBAlIaUUpRoFU02AWgWR0CWlgkWykbhdX2UKGgGaAloD0MIcD51rNKZbkCUhpRSlGgVTTMBaBZHQJaWdnXd0q91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
exp0_ppo_rl/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f474c88abaa8e3d2035744f8fb24d8952cce345fdc8f051059f697a62597667
3
+ size 87929
exp0_ppo_rl/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea0a174261d2563ab411244d3ae1547c196254bad8a4e9fcb8de7df68ba0c4d6
3
+ size 43201
exp0_ppo_rl/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
exp0_ppo_rl/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.45500624118506, "std_reward": 19.999551060220156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T21:43:23.285807"}