--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: Alireza1044/albert-base-v2-mnli model-index: - name: NLI-Lora-Fine-Tuning-10K-ALBERT results: [] --- # NLI-Lora-Fine-Tuning-10K-ALBERT This model is a fine-tuned version of [Alireza1044/albert-base-v2-mnli](https://huggingface.co/Alireza1044/albert-base-v2-mnli) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5040 - Accuracy: 0.8087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.5855 | 0.7969 | | 0.6904 | 2.0 | 624 | 0.5286 | 0.7992 | | 0.6904 | 3.0 | 936 | 0.5205 | 0.8010 | | 0.5659 | 4.0 | 1248 | 0.5168 | 0.8021 | | 0.5529 | 5.0 | 1560 | 0.5128 | 0.8042 | | 0.5529 | 6.0 | 1872 | 0.5096 | 0.8054 | | 0.5459 | 7.0 | 2184 | 0.5071 | 0.8076 | | 0.5459 | 8.0 | 2496 | 0.5055 | 0.8081 | | 0.5319 | 9.0 | 2808 | 0.5044 | 0.8086 | | 0.5319 | 10.0 | 3120 | 0.5040 | 0.8087 | ### Framework versions - PEFT 0.9.1.dev0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2