Model save
Browse files
README.md
CHANGED
@@ -17,9 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Wer:
|
22 |
-
- Cer:
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -39,24 +39,79 @@ More information needed
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 0.0003
|
42 |
-
- train_batch_size:
|
43 |
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- distributed_type: multi-GPU
|
46 |
- num_devices: 8
|
47 |
-
- total_train_batch_size:
|
48 |
- total_eval_batch_size: 64
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 500
|
52 |
-
- num_epochs:
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Wer
|
58 |
-
|
59 |
-
| 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2143
|
21 |
+
- Wer: 0.0995
|
22 |
+
- Cer: 0.0316
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 0.0003
|
42 |
+
- train_batch_size: 32
|
43 |
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- distributed_type: multi-GPU
|
46 |
- num_devices: 8
|
47 |
+
- total_train_batch_size: 256
|
48 |
- total_eval_batch_size: 64
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 50.0
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
59 |
+
| 2.911 | 0.89 | 100 | 2.9202 | 1.0 | 1.0 |
|
60 |
+
| 2.6638 | 1.79 | 200 | 2.6310 | 1.0 | 1.0 |
|
61 |
+
| 0.3898 | 2.68 | 300 | 0.3892 | 0.3366 | 0.0968 |
|
62 |
+
| 0.2156 | 3.57 | 400 | 0.2250 | 0.2090 | 0.0591 |
|
63 |
+
| 0.1517 | 4.46 | 500 | 0.1834 | 0.1695 | 0.0474 |
|
64 |
+
| 0.1059 | 5.36 | 600 | 0.1668 | 0.1502 | 0.0428 |
|
65 |
+
| 0.0825 | 6.25 | 700 | 0.1662 | 0.1406 | 0.0393 |
|
66 |
+
| 0.0679 | 7.14 | 800 | 0.1747 | 0.1357 | 0.0393 |
|
67 |
+
| 0.0602 | 8.04 | 900 | 0.1767 | 0.1334 | 0.0390 |
|
68 |
+
| 0.0587 | 8.93 | 1000 | 0.1708 | 0.1292 | 0.0376 |
|
69 |
+
| 0.0517 | 9.82 | 1100 | 0.1677 | 0.1255 | 0.0372 |
|
70 |
+
| 0.0413 | 10.71 | 1200 | 0.1771 | 0.1234 | 0.0361 |
|
71 |
+
| 0.0418 | 11.61 | 1300 | 0.1731 | 0.1229 | 0.0358 |
|
72 |
+
| 0.0424 | 12.5 | 1400 | 0.1796 | 0.1191 | 0.0348 |
|
73 |
+
| 0.0469 | 13.39 | 1500 | 0.1848 | 0.1207 | 0.0358 |
|
74 |
+
| 0.0414 | 14.29 | 1600 | 0.1863 | 0.1213 | 0.0367 |
|
75 |
+
| 0.0338 | 15.18 | 1700 | 0.1889 | 0.1177 | 0.0347 |
|
76 |
+
| 0.0334 | 16.07 | 1800 | 0.1900 | 0.1188 | 0.0360 |
|
77 |
+
| 0.0315 | 16.96 | 1900 | 0.1901 | 0.1158 | 0.0346 |
|
78 |
+
| 0.0317 | 17.86 | 2000 | 0.1790 | 0.1134 | 0.0341 |
|
79 |
+
| 0.0264 | 18.75 | 2100 | 0.1864 | 0.1159 | 0.0356 |
|
80 |
+
| 0.0271 | 19.64 | 2200 | 0.1861 | 0.1150 | 0.0341 |
|
81 |
+
| 0.0272 | 20.54 | 2300 | 0.1945 | 0.1129 | 0.0339 |
|
82 |
+
| 0.0278 | 21.43 | 2400 | 0.1950 | 0.1131 | 0.0343 |
|
83 |
+
| 0.0254 | 22.32 | 2500 | 0.2015 | 0.1097 | 0.0330 |
|
84 |
+
| 0.0204 | 23.21 | 2600 | 0.1952 | 0.1069 | 0.0326 |
|
85 |
+
| 0.0259 | 24.11 | 2700 | 0.1976 | 0.1103 | 0.0330 |
|
86 |
+
| 0.0325 | 25.0 | 2800 | 0.1958 | 0.1088 | 0.0328 |
|
87 |
+
| 0.0359 | 25.89 | 2900 | 0.1908 | 0.1105 | 0.0346 |
|
88 |
+
| 0.0265 | 26.79 | 3000 | 0.1991 | 0.1096 | 0.0337 |
|
89 |
+
| 0.0223 | 27.68 | 3100 | 0.1948 | 0.1107 | 0.0345 |
|
90 |
+
| 0.025 | 28.57 | 3200 | 0.2046 | 0.1077 | 0.0330 |
|
91 |
+
| 0.0242 | 29.46 | 3300 | 0.2055 | 0.1072 | 0.0335 |
|
92 |
+
| 0.0187 | 30.36 | 3400 | 0.1980 | 0.1021 | 0.0307 |
|
93 |
+
| 0.0219 | 31.25 | 3500 | 0.1998 | 0.1054 | 0.0322 |
|
94 |
+
| 0.0198 | 32.14 | 3600 | 0.2104 | 0.1048 | 0.0322 |
|
95 |
+
| 0.0181 | 33.04 | 3700 | 0.2093 | 0.1050 | 0.0325 |
|
96 |
+
| 0.0166 | 33.93 | 3800 | 0.2120 | 0.1032 | 0.0315 |
|
97 |
+
| 0.0212 | 34.82 | 3900 | 0.2021 | 0.1003 | 0.0300 |
|
98 |
+
| 0.0214 | 35.71 | 4000 | 0.2045 | 0.1033 | 0.0316 |
|
99 |
+
| 0.016 | 36.61 | 4100 | 0.2022 | 0.1000 | 0.0302 |
|
100 |
+
| 0.0169 | 37.5 | 4200 | 0.2060 | 0.0996 | 0.0299 |
|
101 |
+
| 0.0191 | 38.39 | 4300 | 0.2114 | 0.1006 | 0.0307 |
|
102 |
+
| 0.0218 | 39.29 | 4400 | 0.2066 | 0.1015 | 0.0314 |
|
103 |
+
| 0.0182 | 40.18 | 4500 | 0.2054 | 0.0988 | 0.0300 |
|
104 |
+
| 0.0185 | 41.07 | 4600 | 0.2050 | 0.0994 | 0.0303 |
|
105 |
+
| 0.0171 | 41.96 | 4700 | 0.2136 | 0.0994 | 0.0306 |
|
106 |
+
| 0.0171 | 42.86 | 4800 | 0.2062 | 0.1007 | 0.0318 |
|
107 |
+
| 0.0161 | 43.75 | 4900 | 0.2101 | 0.1013 | 0.0319 |
|
108 |
+
| 0.0168 | 44.64 | 5000 | 0.2111 | 0.0985 | 0.0306 |
|
109 |
+
| 0.015 | 45.54 | 5100 | 0.2110 | 0.1003 | 0.0318 |
|
110 |
+
| 0.0126 | 46.43 | 5200 | 0.2086 | 0.0999 | 0.0319 |
|
111 |
+
| 0.0153 | 47.32 | 5300 | 0.2095 | 0.0981 | 0.0310 |
|
112 |
+
| 0.0172 | 48.21 | 5400 | 0.2130 | 0.0985 | 0.0310 |
|
113 |
+
| 0.017 | 49.11 | 5500 | 0.2137 | 0.0994 | 0.0316 |
|
114 |
+
| 0.0152 | 50.0 | 5600 | 0.2143 | 0.0995 | 0.0316 |
|
115 |
|
116 |
|
117 |
### Framework versions
|