Chenghao-Qiu commited on
Commit
593a119
·
verified ·
1 Parent(s): e82b327

Upload flash_attn_triton.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. flash_attn_triton.py +1112 -0
flash_attn_triton.py ADDED
@@ -0,0 +1,1112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 MosaicML Examples authors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ """Triton implementation of Flash Attention.
5
+
6
+ # Copyright (c) 2022, Tri Dao.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+
20
+ *Experimental* implementation of FlashAttention in Triton.
21
+ We use the FlashAttention implementation from Phil Tillet a starting point.
22
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
23
+
24
+ Changes:
25
+ - Implement both causal and non-causal attention.
26
+ - Implement both self-attention and cross-attention.
27
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
28
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
29
+ - Support attention bias.
30
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
31
+ - Make the backward for d=128 much faster by reducing register spilling.
32
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
33
+ small batch size * nheads.
34
+
35
+ Caution:
36
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
37
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
38
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
39
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
40
+ that there are none left for other head dimensions.
41
+ Differences between this Triton version and the CUDA version:
42
+ - Triton version doesn't support dropout.
43
+ - Triton forward is generally faster than CUDA forward.
44
+ - Triton backward is faster than CUDA backward when batch * nheads is small, and when headdim=64.
45
+ It is slightly slower when headdim=128 and batch * nheads is large.
46
+ - Triton version doesn't yet support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
47
+ """
48
+
49
+ import math
50
+
51
+ import torch
52
+ import triton # type: ignore (reportMissingImports)
53
+ import triton.language as tl # type: ignore (reportMissingImports)
54
+ from einops import repeat
55
+
56
+
57
+ @triton.autotune(
58
+ configs=[
59
+ triton.Config({
60
+ 'BLOCK_M': 128,
61
+ 'BLOCK_N': 128
62
+ },
63
+ num_warps=8,
64
+ num_stages=1),
65
+ # This config has a race condition when EVEN_M == False, disabling it for now.
66
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
67
+ ],
68
+ key=[
69
+ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL',
70
+ 'BLOCK_HEADDIM'
71
+ ])
72
+ @triton.heuristics({
73
+ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
74
+ 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
75
+ 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
76
+ })
77
+ @triton.jit
78
+ def _fwd_kernel(
79
+ Q,
80
+ K,
81
+ V,
82
+ Bias,
83
+ Out,
84
+ Lse,
85
+ TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
86
+ softmax_scale,
87
+ stride_qb,
88
+ stride_qh,
89
+ stride_qm,
90
+ stride_kb,
91
+ stride_kh,
92
+ stride_kn,
93
+ stride_vb,
94
+ stride_vh,
95
+ stride_vn,
96
+ stride_bb,
97
+ stride_bh,
98
+ stride_bm,
99
+ stride_ob,
100
+ stride_oh,
101
+ stride_om,
102
+ nheads,
103
+ seqlen_q,
104
+ seqlen_k,
105
+ seqlen_q_rounded,
106
+ headdim,
107
+ CACHE_KEY_SEQLEN_Q,
108
+ CACHE_KEY_SEQLEN_K,
109
+ BIAS_TYPE: tl.constexpr,
110
+ IS_CAUSAL: tl.constexpr,
111
+ BLOCK_HEADDIM: tl.constexpr,
112
+ EVEN_M: tl.constexpr,
113
+ EVEN_N: tl.constexpr,
114
+ EVEN_HEADDIM: tl.constexpr,
115
+ BLOCK_M: tl.constexpr,
116
+ BLOCK_N: tl.constexpr,
117
+ ):
118
+ start_m = tl.program_id(0)
119
+ off_hb = tl.program_id(1)
120
+ off_b = off_hb // nheads
121
+ off_h = off_hb % nheads
122
+ # off_b = tl.program_id(1)
123
+ # off_h = tl.program_id(2)
124
+ # off_hb = off_b * nheads + off_h
125
+ # initialize offsets
126
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
127
+ offs_n = tl.arange(0, BLOCK_N)
128
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
129
+ # Initialize pointers to Q, K, V
130
+ # Adding parenthesis around indexing might use int32 math instead of int64 math?
131
+ # https://github.com/openai/triton/issues/741
132
+ # I'm seeing a tiny bit of difference (5-7us)
133
+ q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (
134
+ offs_m[:, None] * stride_qm + offs_d[None, :])
135
+ k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (
136
+ offs_n[:, None] * stride_kn + offs_d[None, :])
137
+ v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (
138
+ offs_n[:, None] * stride_vn + offs_d[None, :])
139
+ if BIAS_TYPE == 'vector':
140
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
141
+ elif BIAS_TYPE == 'matrix':
142
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (
143
+ offs_m[:, None] * stride_bm + offs_n[None, :])
144
+ else:
145
+ raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
146
+ # initialize pointer to m and l
147
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
148
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
149
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
150
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
151
+ # load q: it will stay in SRAM throughout
152
+ # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
153
+ # tl.load(q_ptrs), we get the wrong output!
154
+ if EVEN_M & EVEN_N:
155
+ if EVEN_HEADDIM:
156
+ q = tl.load(q_ptrs)
157
+ else:
158
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
159
+ else:
160
+ if EVEN_HEADDIM:
161
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
162
+ else:
163
+ q = tl.load(q_ptrs,
164
+ mask=(offs_m[:, None] < seqlen_q) &
165
+ (offs_d[None, :] < headdim),
166
+ other=0.0)
167
+ # loop over k, v and update accumulator
168
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
169
+ (start_m + 1) * BLOCK_M, seqlen_k)
170
+ for start_n in range(0, end_n, BLOCK_N):
171
+ start_n = tl.multiple_of(start_n, BLOCK_N)
172
+ # -- compute qk ----
173
+ if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
174
+ if EVEN_HEADDIM:
175
+ k = tl.load(k_ptrs + start_n * stride_kn)
176
+ else:
177
+ k = tl.load(k_ptrs + start_n * stride_kn,
178
+ mask=offs_d[None, :] < headdim,
179
+ other=0.0)
180
+ else:
181
+ if EVEN_HEADDIM:
182
+ k = tl.load(k_ptrs + start_n * stride_kn,
183
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
184
+ other=0.0)
185
+ else:
186
+ k = tl.load(k_ptrs + start_n * stride_kn,
187
+ mask=((start_n + offs_n)[:, None] < seqlen_k) &
188
+ (offs_d[None, :] < headdim),
189
+ other=0.0)
190
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
191
+ qk += tl.dot(q, k, trans_b=True)
192
+ # Trying to combine the two masks seem to make the result wrong
193
+ if not EVEN_N: # Need to mask out otherwise the softmax is wrong
194
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
195
+ float('-inf'))
196
+ if IS_CAUSAL:
197
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
198
+ float('-inf'))
199
+ if BIAS_TYPE != 'none':
200
+ if BIAS_TYPE == 'vector':
201
+ if EVEN_N:
202
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
203
+ else:
204
+ bias = tl.load(b_ptrs + start_n,
205
+ mask=(start_n + offs_n) < seqlen_k,
206
+ other=0.0).to(tl.float32)
207
+ bias = bias[None, :]
208
+ elif BIAS_TYPE == 'matrix':
209
+ if EVEN_M & EVEN_N:
210
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
211
+ else:
212
+ bias = tl.load(b_ptrs + start_n,
213
+ mask=(offs_m[:, None] < seqlen_q) &
214
+ ((start_n + offs_n)[None, :] < seqlen_k),
215
+ other=0.0).to(tl.float32)
216
+ else:
217
+ raise ValueError(
218
+ "BIAS_TYPE must be one of {'vector', 'matrix'}")
219
+ # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
220
+ # can then fuse the mult and add into an fma instruction. But if we have bias we need to
221
+ # to multiply with softmax_scale here.
222
+ qk = qk * softmax_scale + bias
223
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
224
+ p = tl.exp(qk - m_ij[:, None])
225
+ else:
226
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
227
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
228
+ l_ij = tl.sum(p, 1)
229
+
230
+ # scale acc_o
231
+ acc_o_scale = tl.exp(m_i - m_ij)
232
+
233
+ # # -- update output accumulator --
234
+ # BUG: have to store and immediately load
235
+ tl.store(t_ptrs, acc_o_scale)
236
+ acc_o_scale = tl.load(t_ptrs)
237
+ acc_o = acc_o * acc_o_scale[:, None]
238
+ # update acc_o
239
+ if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
240
+ if EVEN_HEADDIM:
241
+ v = tl.load(v_ptrs + start_n * stride_vn)
242
+ else:
243
+ v = tl.load(v_ptrs + start_n * stride_vn,
244
+ mask=offs_d[None, :] < headdim,
245
+ other=0.0)
246
+ else:
247
+ if EVEN_HEADDIM:
248
+ v = tl.load(v_ptrs + start_n * stride_vn,
249
+ mask=(start_n + offs_n)[:, None] < seqlen_k,
250
+ other=0.0)
251
+ else:
252
+ v = tl.load(v_ptrs + start_n * stride_vn,
253
+ mask=((start_n + offs_n)[:, None] < seqlen_k) &
254
+ (offs_d[None, :] < headdim),
255
+ other=0.0)
256
+ p = p.to(v.dtype)
257
+ acc_o += tl.dot(p, v)
258
+
259
+ # -- update statistics
260
+ m_i = m_ij
261
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
262
+ lse_i = m_ij + tl.log(l_i_new)
263
+
264
+ o_scale = tl.exp(m_i - lse_i)
265
+ # BUG: have to store and immediately load
266
+ tl.store(t_ptrs, o_scale)
267
+ o_scale = tl.load(t_ptrs)
268
+ acc_o = acc_o * o_scale[:, None]
269
+ # rematerialize offsets to save registers
270
+ start_m = tl.program_id(0)
271
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
272
+ # write back l and m
273
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
274
+ tl.store(lse_ptrs, lse_i)
275
+ # initialize pointers to output
276
+ offs_n = tl.arange(0, BLOCK_HEADDIM)
277
+ out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (
278
+ offs_m[:, None] * stride_om + offs_n[None, :])
279
+ if EVEN_M:
280
+ if EVEN_HEADDIM:
281
+ tl.store(out_ptrs, acc_o)
282
+ else:
283
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
284
+ else:
285
+ if EVEN_HEADDIM:
286
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
287
+ else:
288
+ tl.store(out_ptrs,
289
+ acc_o,
290
+ mask=(offs_m[:, None] < seqlen_q) &
291
+ (offs_d[None, :] < headdim))
292
+
293
+
294
+ @triton.jit
295
+ def _bwd_preprocess_do_o_dot(
296
+ Out,
297
+ DO,
298
+ Delta,
299
+ stride_ob,
300
+ stride_oh,
301
+ stride_om,
302
+ stride_dob,
303
+ stride_doh,
304
+ stride_dom,
305
+ nheads,
306
+ seqlen_q,
307
+ seqlen_q_rounded,
308
+ headdim,
309
+ BLOCK_M: tl.constexpr,
310
+ BLOCK_HEADDIM: tl.constexpr,
311
+ ):
312
+ start_m = tl.program_id(0)
313
+ off_hb = tl.program_id(1)
314
+ off_b = off_hb // nheads
315
+ off_h = off_hb % nheads
316
+ # initialize offsets
317
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
318
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
319
+ # load
320
+ o = tl.load(Out + off_b * stride_ob + off_h * stride_oh +
321
+ offs_m[:, None] * stride_om + offs_d[None, :],
322
+ mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
323
+ other=0.0).to(tl.float32)
324
+ do = tl.load(DO + off_b * stride_dob + off_h * stride_doh +
325
+ offs_m[:, None] * stride_dom + offs_d[None, :],
326
+ mask=(offs_m[:, None] < seqlen_q) &
327
+ (offs_d[None, :] < headdim),
328
+ other=0.0).to(tl.float32)
329
+ delta = tl.sum(o * do, axis=1)
330
+ # write-back
331
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
332
+
333
+
334
+ @triton.jit
335
+ def _bwd_kernel_one_col_block(
336
+ start_n,
337
+ Q,
338
+ K,
339
+ V,
340
+ Bias,
341
+ DO,
342
+ DQ,
343
+ DK,
344
+ DV,
345
+ LSE,
346
+ D,
347
+ softmax_scale,
348
+ stride_qm,
349
+ stride_kn,
350
+ stride_vn,
351
+ stride_bm,
352
+ stride_dom,
353
+ stride_dqm,
354
+ stride_dkn,
355
+ stride_dvn,
356
+ seqlen_q,
357
+ seqlen_k,
358
+ headdim,
359
+ ATOMIC_ADD: tl.constexpr,
360
+ BIAS_TYPE: tl.constexpr,
361
+ IS_CAUSAL: tl.constexpr,
362
+ BLOCK_HEADDIM: tl.constexpr,
363
+ EVEN_M: tl.constexpr,
364
+ EVEN_N: tl.constexpr,
365
+ EVEN_HEADDIM: tl.constexpr,
366
+ BLOCK_M: tl.constexpr,
367
+ BLOCK_N: tl.constexpr,
368
+ ):
369
+ # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
370
+ begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
371
+ # initialize row/col offsets
372
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
373
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
374
+ offs_m = tl.arange(0, BLOCK_M)
375
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
376
+ # initialize pointers to value-like data
377
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
378
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
379
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
380
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
381
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
382
+ if BIAS_TYPE == 'vector':
383
+ b_ptrs = Bias + offs_n
384
+ elif BIAS_TYPE == 'matrix':
385
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
386
+ else:
387
+ raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
388
+ # initialize dv and dk
389
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
390
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
391
+ # k and v stay in SRAM throughout
392
+ # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
393
+ # if we just call tl.load(k_ptrs), we get the wrong output!
394
+ if EVEN_N & EVEN_M:
395
+ if EVEN_HEADDIM:
396
+ k = tl.load(k_ptrs)
397
+ v = tl.load(v_ptrs)
398
+ else:
399
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
400
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
401
+ else:
402
+ if EVEN_HEADDIM:
403
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
404
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
405
+ else:
406
+ k = tl.load(k_ptrs,
407
+ mask=(offs_n[:, None] < seqlen_k) &
408
+ (offs_d[None, :] < headdim),
409
+ other=0.0)
410
+ v = tl.load(v_ptrs,
411
+ mask=(offs_n[:, None] < seqlen_k) &
412
+ (offs_d[None, :] < headdim),
413
+ other=0.0)
414
+ # loop over rows
415
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
416
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
417
+ start_m = tl.multiple_of(start_m, BLOCK_M)
418
+ offs_m_curr = start_m + offs_m
419
+ # load q, k, v, do on-chip
420
+ # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
421
+ if EVEN_M & EVEN_HEADDIM:
422
+ q = tl.load(q_ptrs)
423
+ else:
424
+ if EVEN_HEADDIM:
425
+ q = tl.load(q_ptrs,
426
+ mask=offs_m_curr[:, None] < seqlen_q,
427
+ other=0.0)
428
+ else:
429
+ q = tl.load(q_ptrs,
430
+ mask=(offs_m_curr[:, None] < seqlen_q) &
431
+ (offs_d[None, :] < headdim),
432
+ other=0.0)
433
+ # recompute p = softmax(qk, dim=-1).T
434
+ qk = tl.dot(q, k, trans_b=True)
435
+ # Trying to combine the two masks seem to make the result wrong
436
+ if not EVEN_N: # Need to mask out otherwise the softmax is wrong
437
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
438
+ if IS_CAUSAL:
439
+ qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk,
440
+ float('-inf'))
441
+ if BIAS_TYPE != 'none':
442
+ if BIAS_TYPE == 'vector':
443
+ if EVEN_N:
444
+ bias = tl.load(b_ptrs).to(tl.float32)
445
+ else:
446
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k,
447
+ other=0.0).to(tl.float32)
448
+ bias = bias[None, :]
449
+ elif BIAS_TYPE == 'matrix':
450
+ if EVEN_M & EVEN_N:
451
+ bias = tl.load(b_ptrs).to(tl.float32)
452
+ else:
453
+ bias = tl.load(b_ptrs,
454
+ mask=(offs_m_curr[:, None] < seqlen_q) &
455
+ (offs_n[None, :] < seqlen_k),
456
+ other=0.0).to(tl.float32)
457
+ else:
458
+ raise ValueError(
459
+ "BIAS_TYPE must be one of {'vector', 'matrix'}")
460
+ qk = qk * softmax_scale + bias
461
+ # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
462
+ # Also wrong for headdim=64.
463
+ if not (EVEN_M & EVEN_HEADDIM):
464
+ tl.debug_barrier()
465
+ lse_i = tl.load(LSE + offs_m_curr)
466
+ if BIAS_TYPE == 'none':
467
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
468
+ else:
469
+ p = tl.exp(qk - lse_i[:, None])
470
+ # compute dv
471
+ # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
472
+ # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
473
+ # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
474
+ # the output is correct.
475
+ if EVEN_M & EVEN_HEADDIM:
476
+ do = tl.load(do_ptrs)
477
+ else:
478
+ # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
479
+ do = tl.load(do_ptrs,
480
+ mask=(offs_m_curr[:, None] < seqlen_q) &
481
+ (offs_d[None, :] < headdim),
482
+ other=0.0)
483
+ # if EVEN_M:
484
+ # if EVEN_HEADDIM:
485
+ # do = tl.load(do_ptrs)
486
+ # else:
487
+ # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
488
+ # else:
489
+ # if EVEN_HEADDIM:
490
+ # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
491
+ # else:
492
+ # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
493
+ # & (offs_d[None, :] < headdim), other=0.0)
494
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
495
+ # compute dp = dot(v, do)
496
+ # There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
497
+ # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
498
+ # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
499
+ if not (EVEN_M & EVEN_HEADDIM):
500
+ tl.debug_barrier()
501
+ dp = tl.dot(do, v, trans_b=True)
502
+ # There's a race condition for headdim=48
503
+ if not EVEN_HEADDIM:
504
+ tl.debug_barrier()
505
+ # compute ds = p * (dp - delta[:, None])
506
+ # Putting the subtraction after the dp matmul (instead of before) is slightly faster
507
+ Di = tl.load(D + offs_m_curr)
508
+ # Converting ds to q.dtype here reduces register pressure and makes it much faster
509
+ # for BLOCK_HEADDIM=128
510
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
511
+ # compute dk = dot(ds.T, q)
512
+ dk += tl.dot(ds, q, trans_a=True)
513
+ # compute dq
514
+ if not ATOMIC_ADD:
515
+ if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
516
+ dq = tl.load(dq_ptrs, eviction_policy='evict_last')
517
+ dq += tl.dot(ds, k)
518
+ tl.store(dq_ptrs, dq, eviction_policy='evict_last')
519
+ else:
520
+ if EVEN_HEADDIM:
521
+ dq = tl.load(dq_ptrs,
522
+ mask=offs_m_curr[:, None] < seqlen_q,
523
+ other=0.0,
524
+ eviction_policy='evict_last')
525
+ dq += tl.dot(ds, k)
526
+ tl.store(dq_ptrs,
527
+ dq,
528
+ mask=offs_m_curr[:, None] < seqlen_q,
529
+ eviction_policy='evict_last')
530
+ else:
531
+ dq = tl.load(dq_ptrs,
532
+ mask=(offs_m_curr[:, None] < seqlen_q) &
533
+ (offs_d[None, :] < headdim),
534
+ other=0.0,
535
+ eviction_policy='evict_last')
536
+ dq += tl.dot(ds, k)
537
+ tl.store(dq_ptrs,
538
+ dq,
539
+ mask=(offs_m_curr[:, None] < seqlen_q) &
540
+ (offs_d[None, :] < headdim),
541
+ eviction_policy='evict_last')
542
+ else: # If we're parallelizing across the seqlen_k dimension
543
+ dq = tl.dot(ds, k)
544
+ if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
545
+ tl.atomic_add(dq_ptrs, dq)
546
+ else:
547
+ if EVEN_HEADDIM:
548
+ tl.atomic_add(dq_ptrs,
549
+ dq,
550
+ mask=offs_m_curr[:, None] < seqlen_q)
551
+ else:
552
+ tl.atomic_add(dq_ptrs,
553
+ dq,
554
+ mask=(offs_m_curr[:, None] < seqlen_q) &
555
+ (offs_d[None, :] < headdim))
556
+ # increment pointers
557
+ dq_ptrs += BLOCK_M * stride_dqm
558
+ q_ptrs += BLOCK_M * stride_qm
559
+ do_ptrs += BLOCK_M * stride_dom
560
+ if BIAS_TYPE == 'matrix':
561
+ b_ptrs += BLOCK_M * stride_bm
562
+ # write-back
563
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
564
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
565
+ # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
566
+ # if we just call tl.store(dv_ptrs), there's a race condition
567
+ if EVEN_N & EVEN_M:
568
+ if EVEN_HEADDIM:
569
+ tl.store(dv_ptrs, dv)
570
+ tl.store(dk_ptrs, dk)
571
+ else:
572
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
573
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
574
+ else:
575
+ if EVEN_HEADDIM:
576
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
577
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
578
+ else:
579
+ tl.store(dv_ptrs,
580
+ dv,
581
+ mask=(offs_n[:, None] < seqlen_k) &
582
+ (offs_d[None, :] < headdim))
583
+ tl.store(dk_ptrs,
584
+ dk,
585
+ mask=(offs_n[:, None] < seqlen_k) &
586
+ (offs_d[None, :] < headdim))
587
+
588
+
589
+ def init_to_zero(name):
590
+ return lambda nargs: nargs[name].zero_()
591
+
592
+
593
+ @triton.autotune(
594
+ configs=[
595
+ triton.Config(
596
+ {
597
+ 'BLOCK_M': 128,
598
+ 'BLOCK_N': 128,
599
+ 'SEQUENCE_PARALLEL': False
600
+ },
601
+ num_warps=8,
602
+ num_stages=1,
603
+ pre_hook=init_to_zero('DQ')),
604
+ triton.Config(
605
+ {
606
+ 'BLOCK_M': 128,
607
+ 'BLOCK_N': 128,
608
+ 'SEQUENCE_PARALLEL': True
609
+ },
610
+ num_warps=8,
611
+ num_stages=1,
612
+ pre_hook=init_to_zero('DQ')),
613
+ # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
614
+ # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
615
+ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
616
+ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
617
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
618
+ # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
619
+ ],
620
+ key=[
621
+ 'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL',
622
+ 'BLOCK_HEADDIM'
623
+ ],
624
+ )
625
+ @triton.heuristics({
626
+ 'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
627
+ 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
628
+ 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
629
+ })
630
+ @triton.jit
631
+ def _bwd_kernel(
632
+ Q,
633
+ K,
634
+ V,
635
+ Bias,
636
+ DO,
637
+ DQ,
638
+ DK,
639
+ DV,
640
+ LSE,
641
+ D,
642
+ softmax_scale,
643
+ stride_qb,
644
+ stride_qh,
645
+ stride_qm,
646
+ stride_kb,
647
+ stride_kh,
648
+ stride_kn,
649
+ stride_vb,
650
+ stride_vh,
651
+ stride_vn,
652
+ stride_bb,
653
+ stride_bh,
654
+ stride_bm,
655
+ stride_dob,
656
+ stride_doh,
657
+ stride_dom,
658
+ stride_dqb,
659
+ stride_dqh,
660
+ stride_dqm,
661
+ stride_dkb,
662
+ stride_dkh,
663
+ stride_dkn,
664
+ stride_dvb,
665
+ stride_dvh,
666
+ stride_dvn,
667
+ nheads,
668
+ seqlen_q,
669
+ seqlen_k,
670
+ seqlen_q_rounded,
671
+ headdim,
672
+ CACHE_KEY_SEQLEN_Q,
673
+ CACHE_KEY_SEQLEN_K,
674
+ BIAS_TYPE: tl.constexpr,
675
+ IS_CAUSAL: tl.constexpr,
676
+ BLOCK_HEADDIM: tl.constexpr,
677
+ SEQUENCE_PARALLEL: tl.constexpr,
678
+ EVEN_M: tl.constexpr,
679
+ EVEN_N: tl.constexpr,
680
+ EVEN_HEADDIM: tl.constexpr,
681
+ BLOCK_M: tl.constexpr,
682
+ BLOCK_N: tl.constexpr,
683
+ ):
684
+ off_hb = tl.program_id(1)
685
+ off_b = off_hb // nheads
686
+ off_h = off_hb % nheads
687
+ # offset pointers for batch/head
688
+ Q += off_b * stride_qb + off_h * stride_qh
689
+ K += off_b * stride_kb + off_h * stride_kh
690
+ V += off_b * stride_vb + off_h * stride_vh
691
+ DO += off_b * stride_dob + off_h * stride_doh
692
+ DQ += off_b * stride_dqb + off_h * stride_dqh
693
+ DK += off_b * stride_dkb + off_h * stride_dkh
694
+ DV += off_b * stride_dvb + off_h * stride_dvh
695
+ if BIAS_TYPE != 'none':
696
+ Bias += off_b * stride_bb + off_h * stride_bh
697
+ # pointer to row-wise quantities in value-like data
698
+ D += off_hb * seqlen_q_rounded
699
+ LSE += off_hb * seqlen_q_rounded
700
+ if not SEQUENCE_PARALLEL:
701
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
702
+ for start_n in range(0, num_block_n):
703
+ _bwd_kernel_one_col_block(start_n,
704
+ Q,
705
+ K,
706
+ V,
707
+ Bias,
708
+ DO,
709
+ DQ,
710
+ DK,
711
+ DV,
712
+ LSE,
713
+ D,
714
+ softmax_scale,
715
+ stride_qm,
716
+ stride_kn,
717
+ stride_vn,
718
+ stride_bm,
719
+ stride_dom,
720
+ stride_dqm,
721
+ stride_dkn,
722
+ stride_dvn,
723
+ seqlen_q,
724
+ seqlen_k,
725
+ headdim,
726
+ ATOMIC_ADD=False,
727
+ BIAS_TYPE=BIAS_TYPE,
728
+ IS_CAUSAL=IS_CAUSAL,
729
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
730
+ EVEN_M=EVEN_M,
731
+ EVEN_N=EVEN_N,
732
+ EVEN_HEADDIM=EVEN_HEADDIM,
733
+ BLOCK_M=BLOCK_M,
734
+ BLOCK_N=BLOCK_N)
735
+ else:
736
+ start_n = tl.program_id(0)
737
+ _bwd_kernel_one_col_block(start_n,
738
+ Q,
739
+ K,
740
+ V,
741
+ Bias,
742
+ DO,
743
+ DQ,
744
+ DK,
745
+ DV,
746
+ LSE,
747
+ D,
748
+ softmax_scale,
749
+ stride_qm,
750
+ stride_kn,
751
+ stride_vn,
752
+ stride_bm,
753
+ stride_dom,
754
+ stride_dqm,
755
+ stride_dkn,
756
+ stride_dvn,
757
+ seqlen_q,
758
+ seqlen_k,
759
+ headdim,
760
+ ATOMIC_ADD=True,
761
+ BIAS_TYPE=BIAS_TYPE,
762
+ IS_CAUSAL=IS_CAUSAL,
763
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
764
+ EVEN_M=EVEN_M,
765
+ EVEN_N=EVEN_N,
766
+ EVEN_HEADDIM=EVEN_HEADDIM,
767
+ BLOCK_M=BLOCK_M,
768
+ BLOCK_N=BLOCK_N)
769
+
770
+
771
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
772
+ # shape constraints
773
+ batch, seqlen_q, nheads, d = q.shape
774
+ _, seqlen_k, _, _ = k.shape
775
+ assert k.shape == (batch, seqlen_k, nheads, d)
776
+ assert v.shape == (batch, seqlen_k, nheads, d)
777
+ assert d <= 128, 'FlashAttention only support head dimensions up to 128'
778
+ assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
779
+ assert q.dtype in [torch.float16,
780
+ torch.bfloat16], 'Only support fp16 and bf16'
781
+ assert q.is_cuda and k.is_cuda and v.is_cuda
782
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
783
+
784
+ has_bias = bias is not None
785
+ bias_type = 'none'
786
+ if has_bias:
787
+ assert bias.dtype in [q.dtype, torch.float]
788
+ assert bias.is_cuda
789
+ assert bias.dim() == 4
790
+ if bias.stride(-1) != 1:
791
+ bias = bias.contiguous()
792
+ if bias.shape[2:] == (1, seqlen_k):
793
+ bias_type = 'vector'
794
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
795
+ bias_type = 'matrix'
796
+ else:
797
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
798
+ ' or (seqlen_q, seqlen_k)')
799
+ if bias.shape[:2] == (1, nheads):
800
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
801
+ elif bias.shape[:2] == (batch, 1):
802
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
803
+ elif bias.shape[:2] == (1, 1):
804
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
805
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
806
+ assert bias.shape[:2] == (
807
+ batch, nheads
808
+ ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
809
+ assert bias is not None # for type checking
810
+ bias_strides = (bias.stride(0), bias.stride(1),
811
+ bias.stride(2)) if has_bias else (0, 0, 0)
812
+
813
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
814
+ lse = torch.empty((batch, nheads, seqlen_q_rounded),
815
+ device=q.device,
816
+ dtype=torch.float32)
817
+ tmp = torch.empty((batch, nheads, seqlen_q_rounded),
818
+ device=q.device,
819
+ dtype=torch.float32)
820
+ o = torch.empty_like(q)
821
+
822
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
823
+ # BLOCK = 128
824
+ # num_warps = 4 if d <= 64 else 8
825
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
826
+ _fwd_kernel[grid]( # type: ignore
827
+ q,
828
+ k,
829
+ v,
830
+ bias,
831
+ o,
832
+ lse,
833
+ tmp,
834
+ softmax_scale,
835
+ q.stride(0),
836
+ q.stride(2),
837
+ q.stride(1),
838
+ k.stride(0),
839
+ k.stride(2),
840
+ k.stride(1),
841
+ v.stride(0),
842
+ v.stride(2),
843
+ v.stride(1),
844
+ *bias_strides,
845
+ o.stride(0),
846
+ o.stride(2),
847
+ o.stride(1),
848
+ nheads,
849
+ seqlen_q,
850
+ seqlen_k,
851
+ seqlen_q_rounded,
852
+ d,
853
+ seqlen_q // 32,
854
+ seqlen_k // 32, # key for triton cache (limit number of compilations)
855
+ # Can't use kwargs here because triton autotune expects key to be args, not kwargs
856
+ # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
857
+ bias_type,
858
+ causal,
859
+ BLOCK_HEADDIM,
860
+ # BLOCK_M=BLOCK, BLOCK_N=BLOCK,
861
+ # num_warps=num_warps,
862
+ # num_stages=1,
863
+ )
864
+ return o, lse, softmax_scale # softmax_scale could have been updated
865
+
866
+
867
+ def _flash_attn_backward(do,
868
+ q,
869
+ k,
870
+ v,
871
+ o,
872
+ lse,
873
+ dq,
874
+ dk,
875
+ dv,
876
+ bias=None,
877
+ causal=False,
878
+ softmax_scale=None):
879
+ # Make sure that the last dimension is contiguous
880
+ if do.stride(-1) != 1:
881
+ do = do.contiguous()
882
+ batch, seqlen_q, nheads, d = q.shape
883
+ _, seqlen_k, _, _ = k.shape
884
+ # assert d in {16, 32, 64, 128}
885
+ assert d <= 128
886
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
887
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
888
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
889
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
890
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
891
+ # dq_accum = torch.zeros_like(q, dtype=torch.float32)
892
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
893
+ delta = torch.empty_like(lse)
894
+ # delta = torch.zeros_like(lse)
895
+
896
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
897
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
898
+ _bwd_preprocess_do_o_dot[grid]( # type: ignore
899
+ o,
900
+ do,
901
+ delta,
902
+ o.stride(0),
903
+ o.stride(2),
904
+ o.stride(1),
905
+ do.stride(0),
906
+ do.stride(2),
907
+ do.stride(1),
908
+ nheads,
909
+ seqlen_q,
910
+ seqlen_q_rounded,
911
+ d,
912
+ BLOCK_M=128,
913
+ BLOCK_HEADDIM=BLOCK_HEADDIM,
914
+ )
915
+
916
+ has_bias = bias is not None
917
+ bias_type = 'none'
918
+ if has_bias:
919
+ assert bias.dtype in [q.dtype, torch.float]
920
+ assert bias.is_cuda
921
+ assert bias.dim() == 4
922
+ assert bias.stride(-1) == 1
923
+ if bias.shape[2:] == (1, seqlen_k):
924
+ bias_type = 'vector'
925
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
926
+ bias_type = 'matrix'
927
+ else:
928
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
929
+ ' or (seqlen_q, seqlen_k)')
930
+ if bias.shape[:2] == (1, nheads):
931
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
932
+ elif bias.shape[:2] == (batch, 1):
933
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
934
+ elif bias.shape[:2] == (1, 1):
935
+ bias = repeat(bias, '1 h ... -> b h ...', b=batch)
936
+ bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
937
+ assert bias.shape[:2] == (
938
+ batch, nheads
939
+ ), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
940
+ assert bias is not None # type checking
941
+ bias_strides = (bias.stride(0), bias.stride(1),
942
+ bias.stride(2)) if has_bias else (0, 0, 0)
943
+
944
+ # BLOCK_M = 128
945
+ # BLOCK_N = 64
946
+ # num_warps = 4
947
+ grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N'])
948
+ if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
949
+ _bwd_kernel[grid]( # type: ignore
950
+ q,
951
+ k,
952
+ v,
953
+ bias,
954
+ do,
955
+ dq_accum,
956
+ dk,
957
+ dv,
958
+ lse,
959
+ delta,
960
+ softmax_scale,
961
+ q.stride(0),
962
+ q.stride(2),
963
+ q.stride(1),
964
+ k.stride(0),
965
+ k.stride(2),
966
+ k.stride(1),
967
+ v.stride(0),
968
+ v.stride(2),
969
+ v.stride(1),
970
+ *bias_strides,
971
+ do.stride(0),
972
+ do.stride(2),
973
+ do.stride(1),
974
+ dq_accum.stride(0),
975
+ dq_accum.stride(2),
976
+ dq_accum.stride(1),
977
+ dk.stride(0),
978
+ dk.stride(2),
979
+ dk.stride(1),
980
+ dv.stride(0),
981
+ dv.stride(2),
982
+ dv.stride(1),
983
+ nheads,
984
+ seqlen_q,
985
+ seqlen_k,
986
+ seqlen_q_rounded,
987
+ d,
988
+ seqlen_q // 32,
989
+ seqlen_k // 32, # key for triton cache (limit number of compilations)
990
+ # Can't use kwargs here because triton autotune expects key to be args, not kwargs
991
+ # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
992
+ bias_type,
993
+ causal,
994
+ BLOCK_HEADDIM,
995
+ # SEQUENCE_PARALLEL=False,
996
+ # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
997
+ # num_warps=num_warps,
998
+ # num_stages=1,
999
+ )
1000
+ dq.copy_(dq_accum)
1001
+
1002
+
1003
+ class _FlashAttnQKVPackedFunc(torch.autograd.Function):
1004
+
1005
+ @staticmethod
1006
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
1007
+ """Forward pass for packed FlashAttention.
1008
+
1009
+ Args:
1010
+ ctx: autograd context
1011
+ qkv: (batch, seqlen, 3, nheads, headdim)
1012
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
1013
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
1014
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
1015
+ causal (bool): whether to incorporate causal attention masking
1016
+ softmax_scale (float, optional): scale factor for softmax
1017
+ """
1018
+ # Make sure that the last dimension is contiguous
1019
+ if qkv.stride(-1) != 1:
1020
+ qkv = qkv.contiguous()
1021
+ o, lse, ctx.softmax_scale = _flash_attn_forward(
1022
+ qkv[:, :, 0],
1023
+ qkv[:, :, 1],
1024
+ qkv[:, :, 2],
1025
+ bias=bias,
1026
+ causal=causal,
1027
+ softmax_scale=softmax_scale)
1028
+ ctx.save_for_backward(qkv, o, lse, bias)
1029
+ ctx.causal = causal
1030
+ return o
1031
+
1032
+ @staticmethod
1033
+ def backward(ctx, do):
1034
+ qkv, o, lse, bias = ctx.saved_tensors
1035
+ assert not ctx.needs_input_grad[
1036
+ 1], 'FlashAttention does not support bias gradient yet'
1037
+ # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
1038
+ # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
1039
+ with torch.inference_mode():
1040
+ dqkv = torch.empty_like(qkv)
1041
+ _flash_attn_backward(do,
1042
+ qkv[:, :, 0],
1043
+ qkv[:, :, 1],
1044
+ qkv[:, :, 2],
1045
+ o,
1046
+ lse,
1047
+ dqkv[:, :, 0],
1048
+ dqkv[:, :, 1],
1049
+ dqkv[:, :, 2],
1050
+ bias=bias,
1051
+ causal=ctx.causal,
1052
+ softmax_scale=ctx.softmax_scale)
1053
+ return dqkv, None, None, None
1054
+
1055
+
1056
+ flash_attn_qkvpacked_func = _FlashAttnQKVPackedFunc.apply
1057
+
1058
+
1059
+ class _FlashAttnFunc(torch.autograd.Function):
1060
+
1061
+ @staticmethod
1062
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
1063
+ """Forward pass for FlashAttention.
1064
+
1065
+ Args:
1066
+ ctx: autograd context
1067
+ q: (batch_size, seqlen_q, nheads, headdim)
1068
+ k: (batch_size, seqlen_k, nheads, headdim)
1069
+ v: (batch_size, seqlen_k, nheads, headdim)
1070
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
1071
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
1072
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
1073
+ causal (bool): whether to incorporate causal attention masking
1074
+ softmax_scale (float, optional): scale factor for softmax
1075
+ """
1076
+ # Make sure that the last dimension is contiguous
1077
+ q, k, v = [
1078
+ x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
1079
+ ]
1080
+ o, lse, ctx.softmax_scale = _flash_attn_forward(
1081
+ q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
1082
+ ctx.save_for_backward(q, k, v, o, lse, bias)
1083
+ ctx.causal = causal
1084
+ return o
1085
+
1086
+ @staticmethod
1087
+ def backward(ctx, do):
1088
+ q, k, v, o, lse, bias = ctx.saved_tensors
1089
+ assert not ctx.needs_input_grad[
1090
+ 3], 'FlashAttention does not support bias gradient yet'
1091
+ # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
1092
+ # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
1093
+ with torch.inference_mode():
1094
+ dq = torch.empty_like(q)
1095
+ dk = torch.empty_like(k)
1096
+ dv = torch.empty_like(v)
1097
+ _flash_attn_backward(do,
1098
+ q,
1099
+ k,
1100
+ v,
1101
+ o,
1102
+ lse,
1103
+ dq,
1104
+ dk,
1105
+ dv,
1106
+ bias=bias,
1107
+ causal=ctx.causal,
1108
+ softmax_scale=ctx.softmax_scale)
1109
+ return dq, dk, dv, None, None, None
1110
+
1111
+
1112
+ flash_attn_func = _FlashAttnFunc.apply