Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,181 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- mahdin70/balanced_merged_bigvul_primevul
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- recall
|
9 |
+
- precision
|
10 |
+
base_model:
|
11 |
+
- microsoft/codebert-base
|
12 |
+
pipeline_tag: text-classification
|
13 |
+
library_name: transformers
|
14 |
+
---
|
15 |
+
|
16 |
+
# CodeBERT-Primevul-BigVul Model Card
|
17 |
+
|
18 |
+
## Model Overview
|
19 |
+
|
20 |
+
`CodeBERT-Primevul-BigVul` is a multi-task model based on Microsoft's `codebert-base`, fine-tuned to detect vulnerabilities (`vul`) and classify Common Weakness Enumeration (CWE) types in code snippets. It was developed by [mahdin70](https://huggingface.co/mahdin70) and trained on a balanced dataset combining BigVul and PrimeVul datasets. The model performs binary classification for vulnerability detection and multi-class classification for CWE identification.
|
21 |
+
|
22 |
+
- **Model Repository**: [mahdin70/CodeBERT-Primevul-BigVul](https://huggingface.co/mahdin70/CodeBERT-Primevul-BigVul)
|
23 |
+
- **Base Model**: [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)
|
24 |
+
- **Tasks**: Vulnerability Detection (Binary), CWE Classification (Multi-class)
|
25 |
+
- **License**: MIT (assumed; adjust if different)
|
26 |
+
- **Date**: Trained and uploaded as of April 22, 2025
|
27 |
+
|
28 |
+
## Model Architecture
|
29 |
+
|
30 |
+
The model extends `codebert-base` with two task-specific heads:
|
31 |
+
- **Vulnerability Head**: A linear layer mapping 768-dimensional hidden states to 2 classes (vulnerable or not).
|
32 |
+
- **CWE Head**: A linear layer mapping 768-dimensional hidden states to 135 classes (134 CWE types + 1 for "no CWE").
|
33 |
+
|
34 |
+
The architecture is implemented as a custom `MultiTaskCodeBERT` class in PyTorch, with the loss computed as the sum of cross-entropy losses for both tasks.
|
35 |
+
|
36 |
+
## Training Dataset
|
37 |
+
|
38 |
+
The model was trained on the `mahdin70/balanced_merged_bigvul_primevul` dataset, which combines:
|
39 |
+
- **BigVul**: A dataset of real-world vulnerabilities from open-source projects.
|
40 |
+
- **PrimeVul**: A dataset focused on prime vulnerabilities in code.
|
41 |
+
|
42 |
+
### Dataset Details
|
43 |
+
- **Splits**:
|
44 |
+
- Train: 124,780 samples
|
45 |
+
- Validation: 26,740 samples
|
46 |
+
- Test: 26,738 samples
|
47 |
+
|
48 |
+
- **Features**:
|
49 |
+
- `func`: Code snippet (text)
|
50 |
+
- `vul`: Binary label (0 = non-vulnerable, 1 = vulnerable)
|
51 |
+
- `CWE ID`: CWE identifier (e.g., CWE-89) or None for non-vulnerable samples
|
52 |
+
|
53 |
+
- **Preprocessing**:
|
54 |
+
- CWE labels were encoded using a `LabelEncoder` with 134 unique CWE classes identified across the dataset.
|
55 |
+
- Non-vulnerable samples assigned a CWE label of -1 (mapped to 0 in the model).
|
56 |
+
|
57 |
+
The dataset is balanced to ensure a fair representation of vulnerable and non-vulnerable samples, with a maximum of 10 samples per commit where applicable.
|
58 |
+
|
59 |
+
## Training Details
|
60 |
+
|
61 |
+
### Training Arguments
|
62 |
+
The model was trained using the Hugging Face `Trainer` API with the following arguments:
|
63 |
+
- **Evaluation Strategy**: Per epoch
|
64 |
+
- **Save Strategy**: Per epoch
|
65 |
+
- **Learning Rate**: 2e-5
|
66 |
+
- **Batch Size**: 8 (per device, train and eval)
|
67 |
+
- **Epochs**: 3
|
68 |
+
- **Weight Decay**: 0.01
|
69 |
+
- **Logging**: Every 10 steps, logged to `./logs`
|
70 |
+
|
71 |
+
### Training Environment
|
72 |
+
- **Hardware**: 2x NVIDIA Tesla T4 GPU
|
73 |
+
- **Framework**: PyTorch 2.5.1+cu121, Transformers 4.47.0
|
74 |
+
- **Duration**: ~6 hours, 23 minutes, 18 seconds (23,397 steps)
|
75 |
+
|
76 |
+
### Training Metrics
|
77 |
+
Validation metrics across epochs:
|
78 |
+
|
79 |
+
| Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy |
|
80 |
+
|-------|---------------|-----------------|--------------|---------------|------------|----------|--------------|
|
81 |
+
| 1 | 0.4275 | 0.5737 | 0.9519 | 0.7753 | 0.4795 | 0.5925 | 0.0656 |
|
82 |
+
| 2 | 0.7608 | 0.5450 | 0.9537 | 0.7766 | 0.5133 | 0.6181 | 0.1349 |
|
83 |
+
| 3 | 0.5624 | 0.5443 | 0.9545 | 0.7669 | 0.5400 | 0.6338 | 0.1749 |
|
84 |
+
|
85 |
+
|
86 |
+
## Usage
|
87 |
+
|
88 |
+
### Installation
|
89 |
+
Install the required libraries:
|
90 |
+
```bash
|
91 |
+
pip install transformers torch datasets huggingface_hub
|
92 |
+
```
|
93 |
+
|
94 |
+
### Sample Code Snippet
|
95 |
+
Below is an example of how to use the model for inference on a code snippet:
|
96 |
+
|
97 |
+
```python
|
98 |
+
from transformers import AutoTokenizer, AutoModel
|
99 |
+
import torch
|
100 |
+
|
101 |
+
# Load tokenizer and model
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
103 |
+
model = AutoModel.from_pretrained("mahdin70/CodeBERT-Primevul-BigVul", trust_remote_code=True)
|
104 |
+
model.eval()
|
105 |
+
|
106 |
+
# Example code snippet
|
107 |
+
code = """
|
108 |
+
bool DebuggerFunction::InitTabContents() {
|
109 |
+
Value* debuggee;
|
110 |
+
EXTENSION_FUNCTION_VALIDATE(args_->Get(0, &debuggee));
|
111 |
+
|
112 |
+
DictionaryValue* dict = static_cast<DictionaryValue*>(debuggee);
|
113 |
+
EXTENSION_FUNCTION_VALIDATE(dict->GetInteger(keys::kTabIdKey, &tab_id_));
|
114 |
+
|
115 |
+
contents_ = NULL;
|
116 |
+
TabContentsWrapper* wrapper = NULL;
|
117 |
+
bool result = ExtensionTabUtil::GetTabById(
|
118 |
+
tab_id_, profile(), include_incognito(), NULL, NULL, &wrapper, NULL);
|
119 |
+
if (!result || !wrapper) {
|
120 |
+
error_ = ExtensionErrorUtils::FormatErrorMessage(
|
121 |
+
keys::kNoTabError,
|
122 |
+
base::IntToString(tab_id_));
|
123 |
+
return false;
|
124 |
+
}
|
125 |
+
contents_ = wrapper->web_contents();
|
126 |
+
|
127 |
+
if (ChromeWebUIControllerFactory::GetInstance()->HasWebUIScheme(
|
128 |
+
contents_->GetURL())) {
|
129 |
+
error_ = ExtensionErrorUtils::FormatErrorMessage(
|
130 |
+
keys::kAttachToWebUIError,
|
131 |
+
contents_->GetURL().scheme());
|
132 |
+
return false;
|
133 |
+
}
|
134 |
+
|
135 |
+
return true;
|
136 |
+
}
|
137 |
+
"""
|
138 |
+
|
139 |
+
# Tokenize input
|
140 |
+
inputs = tokenizer(code, return_tensors="pt", padding="max_length", truncation=True, max_length=512)
|
141 |
+
|
142 |
+
# Move to GPU if available
|
143 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
144 |
+
model.to(device)
|
145 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
146 |
+
|
147 |
+
# Get predictions
|
148 |
+
with torch.no_grad():
|
149 |
+
outputs = model(**inputs)
|
150 |
+
vul_logits = outputs["vul_logits"]
|
151 |
+
cwe_logits = outputs["cwe_logits"]
|
152 |
+
|
153 |
+
# Vulnerability prediction
|
154 |
+
vul_pred = torch.argmax(vul_logits, dim=1).item()
|
155 |
+
print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Not Vulnerable'}")
|
156 |
+
|
157 |
+
# CWE prediction (if vulnerable)
|
158 |
+
if vul_pred == 1:
|
159 |
+
cwe_pred = torch.argmax(cwe_logits, dim=1).item() - 1 # Subtract 1 as -1 is "no CWE"
|
160 |
+
print(f"Predicted CWE: {cwe_pred if cwe_pred >= 0 else 'None'}")
|
161 |
+
```
|
162 |
+
|
163 |
+
### Output Example:
|
164 |
+
```bash
|
165 |
+
Vulnerability: Vulnerable
|
166 |
+
Predicted CWE: 120 # Maps to CWE-120 (Buffer Overflow), depending on encoder
|
167 |
+
```
|
168 |
+
|
169 |
+
## Notes
|
170 |
+
- The CWE prediction is an integer index (0 to 133). To map it to a specific CWE ID (e.g., CWE-120), you need the LabelEncoder used during training, available in the dataset preprocessing step.
|
171 |
+
- Ensure `trust_remote_code=True` as the model uses custom code from the repository.
|
172 |
+
|
173 |
+
## Limitations
|
174 |
+
- **CWE Accuracy**: The model has low CWE classification accuracy (17.49%), likely due to class imbalance or complexity in distinguishing similar CWE types.
|
175 |
+
- **Recall**: Moderate recall (54.00%) for vulnerability detection suggests some vulnerable samples may be missed.
|
176 |
+
- **Generalization**: Trained on BigVul and PrimeVul, performance may vary on out-of-domain codebases.
|
177 |
+
|
178 |
+
## Future Improvements
|
179 |
+
- Increase training epochs or dataset size to improve CWE accuracy.
|
180 |
+
- Experiment with class weighting to address CWE imbalance.
|
181 |
+
- Fine-tune on additional datasets for broader generalization.
|