Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,95 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- mahdin70/cwe_enriched_balanced_bigvul_primevul
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
base_model:
|
11 |
+
- microsoft/codebert-base
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
|
16 |
+
# CodeBERT-VulnCWE - Fine-Tuned CodeBERT for Vulnerability and CWE Classification
|
17 |
+
|
18 |
+
## Model Overview
|
19 |
+
This model is a fine-tuned version of **microsoft/codebert-base** on a curated and enriched dataset for vulnerability detection and CWE classification. It is capable of predicting whether a given code snippet is vulnerable and, if vulnerable, identifying the specific CWE ID associated with it.
|
20 |
+
|
21 |
+
## Dataset
|
22 |
+
The model was fine-tuned using the dataset [mahdin70/cwe_enriched_balanced_bigvul_primevul](https://huggingface.co/datasets/mahdin70/cwe_enriched_balanced_bigvul_primevul). The dataset contains both vulnerable and non-vulnerable code samples and is enriched with CWE metadata.
|
23 |
+
|
24 |
+
### CWE IDs Covered:
|
25 |
+
1. **CWE-119**: Improper Restriction of Operations within the Bounds of a Memory Buffer
|
26 |
+
2. **CWE-20**: Improper Input Validation
|
27 |
+
3. **CWE-125**: Out-of-bounds Read
|
28 |
+
4. **CWE-399**: Resource Management Errors
|
29 |
+
5. **CWE-200**: Information Exposure
|
30 |
+
6. **CWE-787**: Out-of-bounds Write
|
31 |
+
7. **CWE-264**: Permissions, Privileges, and Access Controls
|
32 |
+
8. **CWE-416**: Use After Free
|
33 |
+
9. **CWE-476**: NULL Pointer Dereference
|
34 |
+
10. **CWE-190**: Integer Overflow or Wraparound
|
35 |
+
11. **CWE-189**: Numeric Errors
|
36 |
+
12. **CWE-362**: Concurrent Execution using Shared Resource with Improper Synchronization
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Model Training
|
41 |
+
The model was trained for **3 epochs** with the following configuration:
|
42 |
+
- **Learning Rate**: 2e-5
|
43 |
+
- **Weight Decay**: 0.01
|
44 |
+
- **Batch Size**: 8
|
45 |
+
- **Optimizer**: AdamW
|
46 |
+
- **Scheduler**: Linear
|
47 |
+
|
48 |
+
### Training Loss and Validation Metrics Per Epoch:
|
49 |
+
| Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy |
|
50 |
+
|-------|---------------|-----------------|--------------|---------------|------------|--------|--------------|
|
51 |
+
| 1 | 1.4663 | 1.4988 | 0.7887 | 0.8526 | 0.5498 | 0.6685 | 0.2932 |
|
52 |
+
| 2 | 1.2107 | 1.3474 | 0.8038 | 0.8493 | 0.6002 | 0.7034 | 0.3688 |
|
53 |
+
| 3 | 1.1885 | 1.3096 | 0.8034 | 0.8020 | 0.6541 | 0.7205 | 0.3963 |
|
54 |
+
|
55 |
+
#### Training Summary:
|
56 |
+
- **Total Training Steps**: 2958
|
57 |
+
- **Training Loss**: 1.3862
|
58 |
+
- **Training Time**: 3058.7 seconds (~51 minutes)
|
59 |
+
- **Training Speed**: 15.47 samples per second
|
60 |
+
- **Steps Per Second**: 0.967
|
61 |
+
|
62 |
+
|
63 |
+
## How to Use the Model
|
64 |
+
```python
|
65 |
+
from transformers import AutoModel, AutoTokenizer
|
66 |
+
|
67 |
+
model = AutoModel.from_pretrained("mahdin70/CodeBERT-VulnCWE", trust_remote_code=True)
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
69 |
+
|
70 |
+
code_snippet = "int main() { int arr[10]; arr[11] = 5; return 0; }"
|
71 |
+
inputs = tokenizer(code_snippet, return_tensors="pt")
|
72 |
+
outputs = model(**inputs)
|
73 |
+
|
74 |
+
vul_logits = outputs["vul_logits"]
|
75 |
+
cwe_logits = outputs["cwe_logits"]
|
76 |
+
|
77 |
+
vul_pred = vul_logits.argmax(dim=1).item()
|
78 |
+
cwe_pred = kov_logits.argmax(dim=1).item()
|
79 |
+
|
80 |
+
print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Non-vulnerable'}")
|
81 |
+
print(f"CWE ID: {cwe_pred if vul_pred == 1 else 'N/A'}")
|
82 |
+
```
|
83 |
+
|
84 |
+
## Limitations and Future Improvements
|
85 |
+
- The model achieves a CWE classification accuracy of 39.63% on the validation set, indicating significant room for improvement. Advanced architectures, better data balancing, or additional pretraining could enhance performance.
|
86 |
+
- The model's vulnerability detection F1-score (72.05% on validation) is moderate but could be improved with further tuning or a larger dataset.
|
87 |
+
- The model may struggle with edge cases or CWEs not well-represented in the training data.
|
88 |
+
- Test set evaluation metrics are pending. Running the model on the test set will provide a clearer picture of its generalization.
|
89 |
+
|
90 |
+
|
91 |
+
## Notes
|
92 |
+
- Ensure the `trust_remote_code=True` flag is used when loading the model, as it relies on custom code for the `MultiTaskCodeBERT` architecture.
|
93 |
+
- The model expects input code snippets tokenized using the CodeBERT tokenizer (`microsoft/codebert-base`).
|
94 |
+
- For best results, preprocess code snippets consistently with the training dataset (e.g., max length of 512 tokens).
|
95 |
+
|